On the very weak solution for the Oseen and Navier-Stokes equations

In a three dimensional bounded possibly multiply-connected domain, we prove the existence and uniqueness of vector potentials in Lp theory, associated with a divergence-free function and satisfying some boundary conditions. We also present some results concerning scalar potentials and weak vector potentials. Furthermore, variousSobolev-type inequalities are given.

[1]  Georges de Rham Variétés différentiables : formes, courants, formes harmoniques , 1955 .

[2]  D. Serre Équations de Navier-Stokes stationnaires avec données peu régulières , 1983 .

[3]  R. Farwig,et al.  Very weak solutions and large uniqueness classes of stationary Navier-Stokes equations in bounded domains of R2 , 2006 .

[4]  Yoshikazu Giga The Stokes operator in $L_r$ spaces , 1981 .

[5]  Jean Leray,et al.  Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'Hydrodynamique. , 1933 .

[6]  K. Schumacher Very weak solutions to the stationary Stokes and Stokes resolvent problem in weighted function spaces , 2008 .

[7]  M. Costabel A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains , 1990 .

[8]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[9]  Hyunseok Kim Existence and Regularity of Very Weak Solutions of the Stationary Navier–Stokes Equations , 2009 .

[10]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[11]  Zhongwei Shen,et al.  On the dimension of the attractor for the non-homogeneous Navier-Stokes equations in non-smooth domains , 2000 .

[12]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[13]  Carlos E. Kenig,et al.  The Dirichlet problem for the Stokes system on Lipschitz domains , 1988 .

[14]  Roger Temam,et al.  On the theory and numerical analysis of the Navier-Stokes equations , 1973 .

[15]  V. Girault,et al.  Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension , 1994 .

[16]  Weighted Sobolev Spaces for a Scalar Model of the Stationary Oseen Equations in $$\mathbb{R}^{3}$$ , 2007 .

[17]  E. Marušic-Paloka,et al.  Solvability of the Navier—Stokes System with L2 Boundary Data , 2000 .

[18]  A note on the Dirichlet problem for the Stokes system in Lipschitz domains , 1995 .

[19]  Giuseppe Savaré,et al.  Regularity Results for Elliptic Equations in Lipschitz Domains , 1998 .

[20]  Zhongwei Shen,et al.  Estimates for the Stokes Operator in Lipschitz Domains , 1995 .

[21]  Giovanni P. Galdi,et al.  A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in W−1/q,q , 2005 .