Face verification using error correcting output codes

The error correcting output coding (ECOC) approach to classifier design decomposes a multi-class problem into a set of complementary two-class problems. We show how to apply the ECOC concept to automatic face verification, which is inherently a two-class problem. The output of the binary classifiers defines the ECOC feature space, in which it is easier to separate transformed patterns representing clients and impostors. We propose two different combining strategies as the matching score for face verification. The first uses the first order Minkowski metric, and requires a threshold to be set. The second is a kernel-based method and has no parameters to set. The proposed method exhibits better performance on the well known XM2VTS data set compared with previous reported results.

[1]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[2]  Jiri Matas,et al.  On Matching Scores for LDA-based Face Verification , 2000, BMVC.

[3]  Hong Yan,et al.  Comparison of face verification results on the XM2VTFS database , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[4]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[5]  Reza Ghaderi,et al.  Multi-class learning and error-correcting code sensitivity , 2000 .

[6]  Jiri Matas,et al.  XM2VTSDB: The Extended M2VTS Database , 1999 .

[7]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[8]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[9]  Yingnan Philip Li Linear Discriminant Analysis and its Application to Face Identification. , 2000 .

[10]  Gareth M. James,et al.  Majority vote classifiers: theory and applications , 1998 .

[11]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[12]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[13]  Reza Ghaderi,et al.  Circular ECOC. A theoretical and experimental analysis , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[14]  Reza Ghaderi,et al.  Least Squares and Estimation Measures via Error Correcting Output Code , 2001, Multiple Classifier Systems.

[15]  Thomas G. Dietterich,et al.  Error-Correcting Output Codes: A General Method for Improving Multiclass Inductive Learning Programs , 1991, AAAI.

[16]  Jiri Matas,et al.  Audio-visual person verification , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[17]  Jiri Matas,et al.  Fast face localisation and verification , 1999, Image Vis. Comput..

[18]  Juergen Luettin,et al.  Evaluation Protocol for the extended M2VTS Database (XM2VTSDB) , 1998 .

[19]  E B Kong,et al.  PROBILITY ESTIMATION VIA ERROR CORRECTING OUTPUT CODING , 1997 .

[20]  Reza Ghaderi,et al.  Binary labelling and decision-level fusion , 2001, Inf. Fusion.

[21]  Reza Ghaderi,et al.  Binary codes for multiclass decision combining , 2000, SPIE Defense + Commercial Sensing.