Non-isothermal, multi-phase, multi-component flows through deformable methane hydrate reservoirs

We present a hydro-geomechanical model for subsurface methane hydrate systems. Our model considers kinetic hydrate phase change and non-isothermal, multi-phase, multi-component flow in elastically deforming soils. The model accounts for the effects of hydrate phase change and pore pressure changes on the mechanical properties of the soil. It also accounts for the effect of soil deformation on the fluid-solid interaction properties relevant to reaction and transport processes (e.g., permeability, capillary pressure, and reaction surface area). We discuss a ’cause-effect’ based decoupling strategy for the model and present our numerical discretization and solution scheme. We then proceed to identify the important model components and couplings which are most vital for a hydro-geomechanical hydrate simulator, namely, (1) dissociation kinetics, (2) hydrate phase change coupled with non-isothermal two phase two component flow, (3) two phase flow coupled with linear elasticity (poroelasticity coupling), and finally (4) hydrate phase change coupled with poroelasticity (kinetics-poroelasticity coupling). To show the versatility of our hydrate model, we numerically simulate test problems where, for each problem, we methodically isolate one out of the four aforementioned model components or couplings. A special emphasis is laid on the kinetics-poroelasticity coupling for which we present a test problem where an axially loaded hydrate bearing sand sample experiences a spontaneous shift in the hydrate stability curve causing the hydrate to melt. For this problem, we present an analytical solution for pore-pressure, which we subsequently use to test the accuracy of the numerical scheme. Finally, we present a more complex 3D example where all the major model components are put together to give an idea of the model capabilities. The setting is based on a subsurface hydrate reservoir which is destabilized through depressurization using a low pressure gas well. In this example, we simulate the melting of hydrate, methane gas generation, and the resulting ground subsidence and stress build-up in the vicinity of the well.

[1]  Olaf Kolditz,et al.  Thermo-Hydro-Mechanical-Chemical Processes in Porous Media , 2012 .

[2]  Adrian Sandu,et al.  Extrapolated Multirate Methods for Differential Equations with Multiple Time Scales , 2013, J. Sci. Comput..

[3]  R. H. Brooks,et al.  Hydraulic properties of porous media , 1963 .

[4]  Kishore K. Mohanty,et al.  1-D Modeling of Hydrate Depressurization in Porous Media , 2005 .

[5]  Yongwon Seo,et al.  Recovering methane from solid methane hydrate with carbon dioxide. , 2003, Angewandte Chemie.

[6]  B. Schrefler,et al.  The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media , 1998 .

[7]  Yoshihiro Masuda,et al.  Prediction of Gas Productivity From Eastern Nankai Trough Methane Hydrate Reservoirs , 2008 .

[8]  J. Laberg,et al.  Triggering mechanisms of slope instability processes and sediment failures on continental margins: a geotechnical approach , 2004 .

[9]  H. M. Roder,et al.  Thermal conductivity of methane for temperatures between 110 and 310 K with pressures to 70 MPa , 1985 .

[10]  F. Enzmann,et al.  Microstructural evolution of gas hydrates in sedimentary matrices observed with synchrotron X‐ray computed tomographic microscopy , 2015 .

[11]  Richard J. Sadus,et al.  Equations of state for the calculation of fluid-phase equilibria , 2000 .

[12]  John S. Selker,et al.  Considerations for modeling bacterial-induced changes in hydraulic properties of variably saturated porous media , 2002 .

[13]  T. P. Clement,et al.  Macroscopic Models for Predicting Changes in Saturated Porous Media Properties Caused by Microbial Growth , 1996 .

[14]  Martin J. Gander,et al.  Techniques for Locally Adaptive Time Stepping Developed over the Last Two Decades , 2013, Domain Decomposition Methods in Science and Engineering XX.

[15]  Andreas Bartel,et al.  A multirate W-method for electrical networks in state-space formulation , 2002 .

[16]  Yukio Nakata,et al.  Effects of dissociation on the shear strength and deformation behavior of methane hydrate-bearing sediments , 2014 .

[17]  G. Tsypkin Effect of liquid phase mobility on gas hydrate dissociation in reservoirs , 1991 .

[18]  K. Terzaghi Erdbaumechanik : auf bodenphysikalischer Grundlage , 1925 .

[19]  J. Grozic,et al.  Strength behavior of methane hydrate bearing sand in undrained triaxial testing , 2013 .

[20]  C.R.I. Clayton,et al.  Influence of gas hydrate morphology on the seismic velocities of sands , 2009 .

[21]  S. Majid Hassanizadeh,et al.  Derivation of basic equations of mass transport in porous media, Part 2. Generalized Darcy's and Fick's laws , 1986 .

[22]  Jiafei Zhao,et al.  Mechanical property of artificial methane hydrate under triaxial compression , 2010 .

[23]  Kenichi Soga,et al.  Characterisation and engineering properties of methane hydrate soils , 2007 .

[24]  A. Milkov Global estimates of hydrate-bound gas in marine sediments: how much is really out there? , 2004 .

[25]  C. Clayton,et al.  A laboratory investigation into the seismic velocities of methane gas hydrate‐bearing sand , 2005 .

[26]  J. MoridisG.,et al.  Development of a Numerical Simulator for Analyzing the Geomechanical Performance of Hydrate-Bearing Sediments , 2008 .

[27]  Seisuke Okubo,et al.  Strain-Rate Dependence of Triaxial Compressive Strength of Artificial Methane-Hydrate-Bearing Sediment , 2010 .

[28]  N. T. Burdine Relative Permeability Calculations From Pore Size Distribution Data , 1953 .

[29]  P. Rentrop,et al.  Multirate ROW methods and latency of electric circuits , 1993 .

[30]  S. Osher,et al.  Numerical approximations to nonlinear conservation laws with locally varying time and space grids , 1983 .

[31]  Rainer Helmig,et al.  Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems , 2015, Computational Geosciences.

[32]  Christian Deusner,et al.  Methane Production from Gas Hydrate Deposits through Injection of Supercritical CO2 , 2012 .

[33]  G. D. Holder,et al.  Dissociation heat transfer characteristics of methane hydrates , 1987 .

[34]  J. Rutqvist,et al.  Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production , 2009 .

[35]  M. Kowalsky,et al.  TOUGH+Hydrate v1.0 User's Manual: A Code for the Simulation of System Behavior in Hydrate-Bearing Geologic Media , 2008 .

[36]  Y. Mualem A New Model for Predicting the Hydraulic Conductivity , 1976 .

[37]  Emil M. Constantinescu,et al.  Multirate Timestepping Methods for Hyperbolic Conservation Laws , 2007, J. Sci. Comput..

[38]  Pierre Cochonat,et al.  Effect of gas hydrates melting on seafloor slope instability , 2003 .

[39]  Thijs J. H. Vlugt,et al.  Mechanical properties of clathrate hydrates: status and perspectives , 2012 .

[40]  Daniel G. Friend,et al.  Thermophysical Properties of Methane , 1989 .

[41]  George J. Moridis,et al.  Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential , 2008 .

[42]  Willem Hundsdorfer,et al.  A multirate time stepping strategy for stiff ordinary differential equations , 2007 .

[43]  Bernd Markert,et al.  Coupled Multi-field and Multi-rate Problems - Numerical Solution and Stability Analysis , 2013 .

[44]  Valeriu Savcenco,et al.  Multirate Numerical Integration for Parabolic PDEs , 2008 .

[45]  Yan Du,et al.  The Experimental and Numerical Studies on Gas Production from Hydrate Reservoir by Depressurization , 2009 .

[46]  J. Carlos Santamarina,et al.  Volume change associated with formation and dissociation of hydrate in sediment , 2010 .

[47]  Koji Yamamoto,et al.  Overview and introduction: Pressure core-sampling and analyses in the 2012–2013 MH21 offshore test of gas production from methane hydrates in the eastern Nankai Trough , 2015 .

[48]  Tae Sup Yun,et al.  Physical properties of hydrate‐bearing sediments , 2009 .

[49]  William F. Waite,et al.  Methane gas hydrate effect on sediment acoustic and strength properties , 2007 .

[50]  J. Rutqvist,et al.  Coupled multiphase fluid flow and wellbore stability analysis associated with gas production from oceanic hydrate-bearing sediments , 2012 .

[51]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework , 2008, Computing.

[52]  Xiaoye S. Li,et al.  SuperLU Users'' Guide , 1997 .

[53]  N. Sultana,et al.  Triggering mechanisms of slope instability processes and sediment failures on continental margins : a geotechnical approach , 2005 .

[54]  J. Santamarina,et al.  Hydro-bio-geomechanical properties of hydrate-bearing sediments from Nankai Trough , 2015 .

[55]  M. H. Yousif,et al.  Experimental and Theoretical Investigation of Methane-Gas-Hydrate Dissociation in Porous Media , 1991 .

[56]  Syed S. H. Rizvi,et al.  Kinetics of methane hydrate decomposition , 1987 .

[57]  J. Andrade,et al.  On the rheology of dilative granular media: Bridging solid- and fluid-like behavior , 2012 .

[58]  兵動 正幸,et al.  BASIC RESEARCH ON THE MECHANICAL BEHAVIOR OF METHANE HYDRATE-SEDIMENTS MIXTURE , 2005 .

[59]  M. Muir Physical Chemistry , 1888, Nature.

[60]  J. Nagao,et al.  Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the Eastern Nankai Trough , 2015 .

[61]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[62]  Andreas Dedner,et al.  A Generic Grid Interface for Adaptive and Parallel Scientific Computing. Part II: Implementation and Tests in DUNE , 2007 .

[63]  Carolyn A. Koh,et al.  Clathrate hydrates of natural gases , 1990 .

[64]  D. Himmelblau Diffusion of Dissolved Gases in Liquids , 1964 .

[65]  P. Raats,et al.  Dynamics of Fluids in Porous Media , 1973 .

[66]  L. Jing,et al.  Thermohydromechanics of partially saturated geological media : governing equations and formulation of four finite element models , 2001 .

[67]  Hitoshi Suzuki North Atlantic Treaty Organization , 1954, International Organization.

[68]  Gang Li,et al.  Control Mechanisms for Gas Hydrate Production by Depressurization in Different Scale Hydrate Reservoirs , 2007 .

[69]  Christian Lubich,et al.  Multirate extrapolation methods for differential equations with different time scales , 1997, Computing.

[70]  Kishore K. Mohanty,et al.  Kinetic simulation of methane hydrate formation and dissociation in porous media , 2006 .

[71]  J. Bear,et al.  Introduction to Modeling of Transport Phenomena in Porous Media , 1990 .

[72]  R. Byron Bird,et al.  Calculation of the diffusion coefficient of dilute gases and of the self‐diffusion coefficient of dense gases , 1958 .

[73]  S. Garziglia,et al.  GEOMECHANICAL CONSTITUTIVE MODELLING OF GAS-HYDRATE- BEARING SEDIMENTS , 2011 .

[74]  Peter B. Flemings,et al.  Dynamic multiphase flow model of hydrate formation in marine sediments , 2007 .

[75]  Norio Tenma,et al.  Triaxial compressive properties of artificial methane-hydrate-bearing sediment , 2011 .

[76]  C. W. Gear,et al.  Multirate linear multistep methods , 1984 .

[77]  H. Bijl,et al.  Implicit and explicit higher order time integration schemes for structural dynamics and fluid-structure interaction computations , 2005 .

[78]  Kenichi Soga,et al.  Coupled deformation–flow analysis for methane hydrate extraction , 2010 .

[79]  E. Dendy Sloan,et al.  Gas Hydrates: Review of Physical/Chemical Properties , 1998 .

[80]  J. Santamarina,et al.  THE IMPACT OF HYDRATE SATURATION ON THE MECHANICAL, ELECTRICAL, AND THERMAL PROPERTIES OF HYDRATE-BEARING SAND, SILTS, AND CLAY , 2008 .

[81]  Clint Dawson,et al.  High Resolution Schemes for Conservation Laws with Locally Varying Time Steps , 2000, SIAM J. Sci. Comput..

[82]  Goodarz Ahmadi,et al.  Numerical solution for natural gas production from methane hydrate dissociation , 2004 .

[83]  R. Dawe,et al.  A Large Potential Methane Source—Natural Gas Hydrates , 2007 .

[84]  R. Split Runge-Kutta Method for Simultaneous Equations , 2010 .

[85]  J. Verwer,et al.  A multirate time stepping strategy for parabolic PDE , 2005 .

[86]  C. C. Law,et al.  ParaView: An End-User Tool for Large-Data Visualization , 2005, The Visualization Handbook.

[87]  M. Schlegel,et al.  Implementation of multirate time integration methods for air pollution modelling , 2012 .

[88]  M. Haeckel,et al.  Estimation of the global inventory of methane hydrates in marine sediments using transfer functions , 2012 .

[89]  Civan Faruk Predictability of Porosity and Permeability Alterations by Geochemical and Geomechanical Rock and Fluid Interactions , 2000 .

[90]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[91]  D. Cyranoski Japanese test coaxes fire from ice , 2013, Nature.

[92]  J. C. Santamarina,et al.  Parametric study of the physical properties of hydrate‐bearing sand, silt, and clay sediments: 2. Small‐strain mechanical properties , 2010 .

[93]  W. Marsden I and J , 2012 .

[94]  Yuri V. Vassilevski,et al.  A monotone nonlinear finite volume method for diffusion equations and multiphase flows , 2014, Computational Geosciences.

[95]  K. Wallmann,et al.  Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation , 2011 .

[96]  Yukio Nakata,et al.  Basic research on the mechanical behavior of methane hydrate-sediments mixture , 2005 .

[97]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[98]  V. Brovkin,et al.  Ocean methane hydrates as a slow tipping point in the global carbon cycle , 2009, Proceedings of the National Academy of Sciences.

[99]  R. Helmig Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems , 2011 .

[100]  Olivier Pouliquen,et al.  A two-phase flow description of the initiation of underwater granular avalanches , 2009, Journal of Fluid Mechanics.

[101]  J. C. Santamarina,et al.  Parametric study of the physical properties of hydrate-bearing sand, silt, and clay sediments: 1. Electromagnetic properties , 2010 .

[102]  G. Narsilio,et al.  Instrumented pressure testing chamber for characterizing sediment cores recovered at in situ hydrostatic pressure , 2006 .

[103]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[104]  George J. Moridis,et al.  Numerical Studies of Gas Production From Methane Hydrates , 2003 .

[105]  I. Lerche Gas Hydrates , 2000 .

[106]  G. Deerberg,et al.  Simulation of Methane Recovery from Gas Hydrates Combined with Storing Carbon Dioxide as Hydrates , 2011 .

[107]  Keun-Pil Park,et al.  Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates , 2006, Proceedings of the National Academy of Sciences.

[108]  K. Soga,et al.  Discrete element modelling of geomechanical behaviour of methane hydrate soils with pore-filling hydrate distribution , 2010 .

[109]  Theda McGrew To , 1997, Neurology.

[110]  M. Biot,et al.  THE ELASTIC COEFFICIENTS OF THE THEORY OF CONSOLIDATION , 1957 .

[111]  George J. Moridis,et al.  Depressurization-induced gas production from Class 1 hydratedeposits , 2005 .

[112]  M. Reagan,et al.  Field-Scale Simulation of Production from Oceanic Gas Hydrate Deposits , 2015, Transport in Porous Media.

[113]  Arie Verhoeven,et al.  Stability analysis of the BDF Slowest-first multirate methods , 2007, Int. J. Comput. Math..

[114]  B. A. Baldwin,et al.  Measuring gas hydrate formation and exchange with CO2 in Bentheim sandstone using MRI tomography , 2010 .

[115]  Sayuri Kimoto,et al.  A chemo–thermo–mechanically coupled analysis of ground deformation induced by gas hydrate dissociation , 2010 .