Quadratic Volume-Preserving Maps: Invariant Circles and Bifurcations

We study the dynamics of the five-parameter quadratic family of volume-preserving diffeomorphisms of $\mathbb{R}^3$. This family is the unfolded normal form for a bifurcation of a fixed point with a triple-one multiplier and is also the general form of a quadratic three-dimensional map with a quadratic inverse. Much of the nontrivial dynamics of this map occurs when its two fixed points are saddle-foci with intersecting two-dimensional stable and unstable manifolds that bound a spherical “vortex-bubble.” We show that this occurs near a saddle-center-Neimark–Sacker (SCNS) bifurcation that also creates, at least in its normal form, an elliptic invariant circle. We develop a simple algorithm to accurately compute these elliptic invariant circles and their longitudinal and transverse rotation numbers and use it to study their bifurcations, classifying them by the resonances between the rotation numbers. In particular, rational values of the longitudinal rotation number are shown to give rise to a string of pe...

[1]  S. V. Fomin,et al.  Ergodic Theory , 1982 .

[2]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[3]  Santiago Ibáñez,et al.  Nilpotent Singularities in Generic 4-Parameter Families of 3-Dimensional Vector Fields , 1996 .

[4]  Freddy Dumortier,et al.  New aspects in the unfolding of the nilpotent singularity of codimension three , 2001 .

[5]  Y. Sun,et al.  Existence of periodically invariant curves in 3-dimensional measure-preserving mappings , 1989 .

[6]  M. Hénon Numerical study of quadratic area-preserving mappings , 1969 .

[7]  C. Simó,et al.  Effective Computations in Celestial Mechanics and Astrodynamics , 1998 .

[8]  D. Milan,et al.  Radiation hybrid mapping and sequence analysis of 21 genes on porcine chromosome 15. , 2006, Animal genetics.

[9]  Kenneth R. Meyer,et al.  Introduction to Hamiltonian Dynamical Systems and the N-Body Problem , 1991 .

[10]  Self-rotation number using the turning angle , 2000 .

[11]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[12]  H. Broer,et al.  Formal normal form theorems for vector fields and some consequences for bifurcations in the volume preserving case , 1981 .

[13]  Reduction of three-dimensional, volume-preserving flows with symmetry , 1998 .

[14]  J. Meiss,et al.  Quadratic volume preserving maps , 1997, chao-dyn/9706001.

[15]  Àlex Haro,et al.  A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity , 2008 .

[16]  Ronald C. Read The knot book: An elementary introduction to the mathematical theory of knots , 1997 .

[17]  Dmitry Turaev,et al.  Three-Dimensional HÉnon-like Maps and Wild Lorenz-like attractors , 2005, Int. J. Bifurc. Chaos.

[18]  J. Meiss,et al.  Nilpotent normal form for divergence-free vector fields and volume-preserving maps , 2007, 0706.1575.

[19]  Alain Arneodo,et al.  CASCADE OF PERIOD DOUBLINGS OF TORI , 1983 .

[20]  K. Efstathiou,et al.  A method for accurate computation of the rotation and the twist numbers of invariant circles , 2001 .

[21]  J. Stark,et al.  Towards a Classification for Quasiperiodically Forced Circle Homeomorphisms , 2005, math/0502129.

[22]  Robert S. MacKay,et al.  Transport in 3D volume-preserving flows , 1994 .

[23]  Shmuel Friedland,et al.  Dynamical properties of plane polynomial automorphisms , 1989, Ergodic Theory and Dynamical Systems.

[24]  Y. Lan,et al.  Newton's descent method for the determination of invariant tori. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[26]  T. Bridges,et al.  Unipotent normal forms for symplectic maps , 1993 .

[27]  G. Keller,et al.  The Denjoy type of argument for quasiperiodically forced circle diffeomorphisms , 2003, Ergodic Theory and Dynamical Systems.

[28]  James Murdock,et al.  Normal Forms and Unfoldings for Local Dynamical Systems , 2002 .

[29]  Àlex Haro,et al.  A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity , 2006, SIAM J. Appl. Dyn. Syst..

[30]  John Erik Fornæss,et al.  Classification of degree 2 polynomial automorphisms of C3 , 1998 .

[31]  M. R. Herman Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .

[32]  J. Meiss,et al.  Heteroclinic primary intersections and codimension one Melnikov method for volume-preserving maps. , 2000, Chaos.

[33]  P. Coullet,et al.  A simple global characterization for normal forms of singular vector fields , 1987 .

[34]  B. M. Fulk MATH , 1992 .

[35]  V. Pambuccian,et al.  DYNAMICS OF SHIFT-LIKE POLYNOMIAL DIFFEOMORPHISMS OF C , 1998 .

[36]  Frank Schilder,et al.  Continuation of Quasi-periodic Invariant Tori , 2005, SIAM J. Appl. Dyn. Syst..

[37]  I. I. Ovsyannikov,et al.  CHAOTIC DYNAMICS OF THREE-DIMENSIONAL H ENON MAPS THAT ORIGINATE FROM A HOMOCLINIC BIFURCATION , 2005, nlin/0510061.

[38]  Chong-Qing Cheng,et al.  Existence of invariant tori in three-dimensional measure-preserving mappings , 1989 .

[39]  C. Caramanis What is ergodic theory , 1963 .

[40]  J. Forn CLASSIFICATION OF DEGREE 2 POLYNOMIAL AUTOMORPHISMS OF C 3 , 1998 .

[41]  Kossi D. Edoh,et al.  Numerical Approximation of Rough Invariant Curves of Planar Maps , 2003, SIAM J. Sci. Comput..

[42]  E. Castell On the vertical families of two-dimensional tori near the triangular points of the Bicircular problem , 1999 .

[43]  Homoclinic points in symplectic and volume-preserving diffeomorphisms , 1996 .

[44]  Hendrik Broer,et al.  Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: Analysis of a resonance ‘bubble’ , 2008 .

[45]  Rafael de la Llave,et al.  A parameterization method for the computation of invariant tori andtheir whiskers in quasi-periodic maps: Numerical algorithms , 2006 .

[46]  J. H. Irby,et al.  Formation of a spheromak plasma configuration , 1980 .

[47]  dynamics. Boulder,et al.  Fluids and plasmas : geometry and dynamics , 1984 .