Quadratic Volume-Preserving Maps: Invariant Circles and Bifurcations
暂无分享,去创建一个
[1] S. V. Fomin,et al. Ergodic Theory , 1982 .
[2] H. J.,et al. Hydrodynamics , 1924, Nature.
[3] Santiago Ibáñez,et al. Nilpotent Singularities in Generic 4-Parameter Families of 3-Dimensional Vector Fields , 1996 .
[4] Freddy Dumortier,et al. New aspects in the unfolding of the nilpotent singularity of codimension three , 2001 .
[5] Y. Sun,et al. Existence of periodically invariant curves in 3-dimensional measure-preserving mappings , 1989 .
[6] M. Hénon. Numerical study of quadratic area-preserving mappings , 1969 .
[7] C. Simó,et al. Effective Computations in Celestial Mechanics and Astrodynamics , 1998 .
[8] D. Milan,et al. Radiation hybrid mapping and sequence analysis of 21 genes on porcine chromosome 15. , 2006, Animal genetics.
[9] Kenneth R. Meyer,et al. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem , 1991 .
[10] Self-rotation number using the turning angle , 2000 .
[11] G. Hardy,et al. An Introduction to the Theory of Numbers , 1938 .
[12] H. Broer,et al. Formal normal form theorems for vector fields and some consequences for bifurcations in the volume preserving case , 1981 .
[13] Reduction of three-dimensional, volume-preserving flows with symmetry , 1998 .
[14] J. Meiss,et al. Quadratic volume preserving maps , 1997, chao-dyn/9706001.
[15] Àlex Haro,et al. A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity , 2008 .
[16] Ronald C. Read. The knot book: An elementary introduction to the mathematical theory of knots , 1997 .
[17] Dmitry Turaev,et al. Three-Dimensional HÉnon-like Maps and Wild Lorenz-like attractors , 2005, Int. J. Bifurc. Chaos.
[18] J. Meiss,et al. Nilpotent normal form for divergence-free vector fields and volume-preserving maps , 2007, 0706.1575.
[19] Alain Arneodo,et al. CASCADE OF PERIOD DOUBLINGS OF TORI , 1983 .
[20] K. Efstathiou,et al. A method for accurate computation of the rotation and the twist numbers of invariant circles , 2001 .
[21] J. Stark,et al. Towards a Classification for Quasiperiodically Forced Circle Homeomorphisms , 2005, math/0502129.
[22] Robert S. MacKay,et al. Transport in 3D volume-preserving flows , 1994 .
[23] Shmuel Friedland,et al. Dynamical properties of plane polynomial automorphisms , 1989, Ergodic Theory and Dynamical Systems.
[24] Y. Lan,et al. Newton's descent method for the determination of invariant tori. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[25] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[26] T. Bridges,et al. Unipotent normal forms for symplectic maps , 1993 .
[27] G. Keller,et al. The Denjoy type of argument for quasiperiodically forced circle diffeomorphisms , 2003, Ergodic Theory and Dynamical Systems.
[28] James Murdock,et al. Normal Forms and Unfoldings for Local Dynamical Systems , 2002 .
[29] Àlex Haro,et al. A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity , 2006, SIAM J. Appl. Dyn. Syst..
[30] John Erik Fornæss,et al. Classification of degree 2 polynomial automorphisms of C3 , 1998 .
[31] M. R. Herman. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d’un théorème d’Arnold et de Moser sur le tore de dimension 2 , 1983 .
[32] J. Meiss,et al. Heteroclinic primary intersections and codimension one Melnikov method for volume-preserving maps. , 2000, Chaos.
[33] P. Coullet,et al. A simple global characterization for normal forms of singular vector fields , 1987 .
[34] B. M. Fulk. MATH , 1992 .
[35] V. Pambuccian,et al. DYNAMICS OF SHIFT-LIKE POLYNOMIAL DIFFEOMORPHISMS OF C , 1998 .
[36] Frank Schilder,et al. Continuation of Quasi-periodic Invariant Tori , 2005, SIAM J. Appl. Dyn. Syst..
[37] I. I. Ovsyannikov,et al. CHAOTIC DYNAMICS OF THREE-DIMENSIONAL H ENON MAPS THAT ORIGINATE FROM A HOMOCLINIC BIFURCATION , 2005, nlin/0510061.
[38] Chong-Qing Cheng,et al. Existence of invariant tori in three-dimensional measure-preserving mappings , 1989 .
[39] C. Caramanis. What is ergodic theory , 1963 .
[40] J. Forn. CLASSIFICATION OF DEGREE 2 POLYNOMIAL AUTOMORPHISMS OF C 3 , 1998 .
[41] Kossi D. Edoh,et al. Numerical Approximation of Rough Invariant Curves of Planar Maps , 2003, SIAM J. Sci. Comput..
[42] E. Castell. On the vertical families of two-dimensional tori near the triangular points of the Bicircular problem , 1999 .
[43] Homoclinic points in symplectic and volume-preserving diffeomorphisms , 1996 .
[44] Hendrik Broer,et al. Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: Analysis of a resonance ‘bubble’ , 2008 .
[45] Rafael de la Llave,et al. A parameterization method for the computation of invariant tori andtheir whiskers in quasi-periodic maps: Numerical algorithms , 2006 .
[46] J. H. Irby,et al. Formation of a spheromak plasma configuration , 1980 .
[47] dynamics. Boulder,et al. Fluids and plasmas : geometry and dynamics , 1984 .