Doped polymer for low-loss dielectric material in the terahertz range

The dielectric properties of an elastomeric polymer are modified with the inclusion of dopants, with the aim of reducing dielectric loss in the terahertz range. Polydimethylsiloxane (PDMS) is selected as the host polymer, and micro/nano-particle powders of either alumina or polytetrafluoroethylene (PTFE) are employed as dopants. Composite samples are prepared, and characterised with terahertz time-domain spectroscopy (THz-TDS). The samples exhibit significantly reduced dielectric loss, with a maximum reduction of 15.3% in loss tangent reported for a sample that is 40% PTFE by mass. Results are found to have reasonable agreement with the Lichtenecker logarithmic mixture formula, and any deviation can be accounted for by agglomeration of dopant micro/nano-particles. The new dielectric composites are promising for devising efficient micro-structure components at terahertz frequencies.

[1]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[2]  H. Looyenga Dielectric constants of heterogeneous mixtures , 1965 .

[3]  R Ruud Metselaar,et al.  Light scattering by pores in polycrystalline materials: Transmission properties of alumina , 1974 .

[4]  Andrew J. Gatesman,et al.  Tailoring Artificial Dielectric Materials at Terahertz Frequencies , 1993 .

[5]  Y. Nosé,et al.  Biocompatibility of alumina ceramic and polyethylene as materials for pivot bearings of a centrifugal blood pump. , 1997, Journal of biomedical materials research.

[6]  P. Veltink,et al.  The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications , 1997 .

[7]  E. Furth,et al.  PTFE-encapsulated endovascular stent-graft for transjugular intrahepatic portosystemic shunts: experimental evaluation. , 1997, Radiology.

[8]  A. Sihvola Two Main Avenues Leading To the Maxwell Garnett Mixing Rule , 2001 .

[9]  A. V. van Duin,et al.  Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. , 2005, Journal of the American Chemical Society.

[10]  H. Kurz,et al.  Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies , 2005, IEEE Transactions on Microwave Theory and Techniques.

[11]  Yun-Sik Jin,et al.  Terahertz Dielectric Properties of Polymers , 2006 .

[12]  S. Wietzkea,et al.  Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy , 2007 .

[13]  L. Overzet,et al.  Surface kinetics with low ion energy bombardment in fluorocarbon plasmas , 2007 .

[14]  X. Zhang,et al.  Terahertz metamaterials on free-standing highly-flexible polyimide substrates , 2008, 0808.0454.

[15]  Willie J Padilla,et al.  Highly-flexible wide angle of incidence terahertz metamaterial absorber , 2008, 0808.2416.

[16]  M. Koch,et al.  Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory , 2009 .

[17]  Antoinette J. Taylor,et al.  Tunable Terahertz Metamaterials , 2009 .

[18]  Daniel M. Mittleman,et al.  Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies , 2010 .

[19]  R. Simpkin,et al.  Derivation of Lichtenecker's Logarithmic Mixture Formula From Maxwell's Equations , 2010, IEEE Transactions on Microwave Theory and Techniques.

[20]  Yonggang Huang,et al.  Mechanics analysis of two-dimensionally prestrained elastomeric thin film for stretchable electronics , 2010 .

[21]  N. Han,et al.  Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. , 2011, Optics express.

[22]  Brent M. Polishak,et al.  Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials , 2011 .

[23]  C. Dubois,et al.  High-refractive-index composite materials for terahertz waveguides: trade-off between index contrast and absorption loss , 2010, 1009.2667.

[24]  Yong-hee Lee,et al.  A terahertz metamaterial with unnaturally high refractive index , 2011, Nature.

[25]  R. Averitt,et al.  Flexible metamaterial absorbers for stealth applications at terahertz frequencies. , 2012, Optics express.

[26]  Christophe Fumeaux,et al.  Reflectarray antennas for terahertz communications , 2012 .

[27]  Derek Abbott,et al.  Elastomeric silicone substrates for terahertz fishnet metamaterials , 2012 .

[28]  Gerald J. Wilmink,et al.  Development of terahertz (THz) microfluidic devices for “Lab-on-a-Chip” applications , 2013, Photonics West - Biomedical Optics.

[29]  D. Abbott,et al.  Dual-Mode Terahertz Time-Domain Spectroscopy System , 2013, IEEE Transactions on Terahertz Science and Technology.

[30]  D. R. Chowdhury,et al.  Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction , 2013, Science.

[31]  A. Mitchell,et al.  Mechanically tunable terahertz metamaterials , 2013 .

[32]  Christophe Fumeaux,et al.  Experimental demonstration of reflectarray antennas at terahertz frequencies. , 2012, Optics express.

[33]  S. C. Corzo-Garcia,et al.  Quality control of leather by terahertz time-domain spectroscopy. , 2014, Applied optics.

[34]  P. Mounaix,et al.  Terahertz metamolecules deposited on thin flexible polymer: design, fabrication and experimental characterization , 2014 .

[35]  Mira Naftaly,et al.  Fundamentals of Measurement in Terahertz Time-Domain Spectroscopy , 2014 .

[36]  Derek Abbott,et al.  Terahertz reflectarray as a polarizing beam splitter. , 2014, Optics express.

[37]  Derek Abbott,et al.  Ultrabroadband reflective polarization convertor for terahertz waves , 2014 .

[38]  D. R. Chowdhury,et al.  Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales , 2015 .

[39]  Martin Koch,et al.  Quality Control of Sugar Beet Seeds With THz Time-Domain Spectroscopy , 2016, IEEE Transactions on Terahertz Science and Technology.