Pulsed laser writing of holographic nanosensors

Tuneable optical sensors have been developed to sense chemical stimuli for a range of applications from bioprocess and environmental monitoring to medical diagnostics. Here, we present a porphyrin-functionalised optical sensor based on a holographic grating. The holographic sensor fulfils two key sensing functions simultaneously: it responds to external stimuli and serves as an optical transducer in the visible region of the spectrum. The sensor was fabricated via a 6 nanosecond-pulsed laser (350 mJ, λ = 532 nm) photochemical patterning process that enabled a facile fabrication. A novel porphyrin derivative was synthesised to function as the crosslinker of a polymer matrix, the light-absorbing material, the component of a diffraction grating, as well as the cation chelating agent in the sensor. The use of this multifunctional porphyrin permitted two-step fabrication of a narrow-band light diffracting photonic sensing structure. The resulting structure can be tuned finely to diffract narrow-band light based on the changes in the fringe spacing within the polymer and the system's overall index of refraction. We show the utility of the sensor by demonstrating its reversible colorimetric tuneability in response to variation in concentrations of organic solvents and metal cations (Cu2+ and Fe2+) in the visible region of the spectrum (λmax ≈ 520–680 nm) with a response time within 50 s. Porphyrin-functionalised optical sensors offer great promise in fields varying from environmental monitoring to biochemical sensing to printable optical devices.

[1]  S. Ahrland,et al.  The relative affinities of ligand atoms for acceptor molecules and ions , 1958 .

[2]  Neal A. Rakow,et al.  A colorimetric sensor array for odour visualization , 2000, Nature.

[3]  E. Thomas,et al.  Broad-wavelength-range chemically tunable block-copolymer photonic gels. , 2007, Nature materials.

[4]  J. Pritchard,et al.  Selective holographic detection of glucose using tertiary amines. , 2006, Chemical communications.

[5]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[6]  Soong Ho Um,et al.  Enzyme-catalysed assembly of DNA hydrogel , 2006, Nature materials.

[7]  Jeremy J. Baumberg,et al.  Light‐Directed Writing of Chemically Tunable Narrow‐Band Holographic Sensors , 2014 .

[8]  Vincent Toal,et al.  Photopolymerizable nanocomposites for holographic recording and sensor application. , 2010, Applied optics.

[9]  Vincent Toal,et al.  Characterisation of the Humidity and Temperature Responses of a Reflection Hologram Recorded in Acrylamide-based Photopolymer , 2009 .

[10]  J. Galisteo‐López,et al.  Self‐Assembled Photonic Structures , 2011, Advanced materials.

[11]  J. Aizenberg,et al.  Bio-Inspired Band-Gap Tunable Elastic Optical Multilayer Fibers , 2013, Advanced materials.

[12]  G. Ozin,et al.  Bottom-up assembly of photonic crystals. , 2013, Chemical Society reviews.

[13]  Jeff Blyth,et al.  Glucose-sensitive holographic sensors for monitoring bacterial growth. , 2004, Analytical chemistry.

[14]  M. Lundeen,et al.  A calorimetric study of some metal ion complexing equilibria , 1992 .

[15]  M. Biesaga,et al.  Porphyrins in analytical chemistry. A review. , 2000, Talanta.

[16]  Kristi S. Anseth,et al.  Photodegradable Hydrogels for Dynamic Tuning of Physical and Chemical Properties , 2009, Science.

[17]  Dale W. Margerum,et al.  Macrocyclic effect on the stability of copper(II) tetramine complexes , 1969 .

[18]  Jeff Blyth,et al.  Divalent metal ion-sensitive holographic sensors , 2005 .

[19]  Delia J. Milliron,et al.  Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites , 2013, Nature.

[20]  Jeff Blyth,et al.  A Holographic Alcohol Sensor , 1999 .

[21]  Günter Steinmeyer,et al.  A chirped photonic-crystal fibre , 2008 .

[22]  Shinpei Ogawa,et al.  Control of Light Emission by 3D Photonic Crystals , 2004, Science.

[23]  E. Dalcanale,et al.  Production of novel microporous porphyrin materials with superior sensing capabilities , 2012 .

[24]  Andreas Stein,et al.  Tunable Colors in Opals and Inverse Opal Photonic Crystals , 2010 .

[25]  Zhongze Gu,et al.  Photonic Crystals in Bioassays , 2010 .

[26]  S. Mintova,et al.  Optical Properties of Photopolymer Layers Doped with Aluminophosphate Nanocrystals , 2010 .

[27]  Francesco Scotognella,et al.  Stacking the Nanochemistry Deck: Structural and Compositional Diversity in One‐Dimensional Photonic Crystals , 2009 .

[28]  Derek N. Woolfson,et al.  Rational design and application of responsive α-helical peptide hydrogels , 2009, Nature materials.

[29]  M. Fussenegger,et al.  Drug-sensing hydrogels for the inducible release of biopharmaceuticals. , 2008, Nature materials.

[30]  Karsten Haupt,et al.  Molecularly Imprinted Silver‐Halide Reflection Holograms for Label‐Free Opto‐Chemical Sensing , 2014 .

[31]  Ali K. Yetisen,et al.  Computational modelling and characterisation of nanoparticle-based tuneable photonic crystal sensors , 2014 .

[32]  C. Lowe,et al.  Metabolite-sensitive holographic biosensors. , 2004, Analytical Chemistry.

[33]  P. Nealey,et al.  Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates , 2003, Nature.

[34]  Steven G. Johnson,et al.  A three-dimensional optical photonic crystal with designed point defects , 2004, Nature.

[35]  Jeff Blyth,et al.  Towards the real-time monitoring of glucose in tear fluid: holographic glucose sensors with reduced interference from lactate and pH. , 2008, Biosensors & bioelectronics.

[36]  Ludovico Cademartiri,et al.  From colour fingerprinting to the control of photoluminescence in elastic photonic crystals , 2006 .

[37]  Jeff Blyth,et al.  Holographic sensors for the determination of ionic strength , 2004 .

[38]  Susumu Noda,et al.  Manipulation of photons at the surface of three-dimensional photonic crystals , 2009, Nature.

[39]  C. Tanford Macromolecules , 1994, Nature.

[40]  Karsten Haupt,et al.  Holographic Molecularly Imprinted Polymers for Label‐Free Chemical Sensing , 2013, Advanced materials.

[41]  J. Blyth,et al.  Glucose‐sensitive holographic sensors , 2004, Journal of molecular recognition : JMR.

[42]  A. Horgan,et al.  Crosslinking of phenylboronic acid receptors as a means of glucose selective holographic detection. , 2006, Biosensors & bioelectronics.

[43]  L. Twyman,et al.  Synthesis of Multiporphyrin Containing Hyperbranched Polymers , 2011 .

[44]  D. Rao,et al.  Third‐order, nonlinear optical interactions of some benzporphyrins , 1991 .

[45]  Yasuhiko Arakawa,et al.  Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity , 2008 .

[46]  Vincent Toal,et al.  A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer , 2008 .

[47]  A. Neuberger,et al.  The basicities of the nitrogen atoms in the porphyrin nucleus; their dependence on some substituents of the tetrapyrrolic ring , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[48]  C. Lowe,et al.  A hologram biosensor for proteases , 1996 .

[49]  Jeff Blyth,et al.  Metal ion-sensitive holographic sensors. , 2002, Analytical chemistry.

[50]  Christopher R Lowe,et al.  Holographic enzyme inhibition assays for drug discovery. , 2009, Analytical chemistry.

[51]  R. J. P. Williams,et al.  637. The stability of transition-metal complexes , 1953 .

[52]  F. Schacher,et al.  Functional block copolymers: nanostructured materials with emerging applications. , 2012, Angewandte Chemie.

[53]  R. Langer,et al.  Light-induced shape-memory polymers , 2005, Nature.

[54]  M. C. Stuart,et al.  Emerging applications of stimuli-responsive polymer materials. , 2010, Nature materials.

[55]  Paul V. Braun,et al.  Embedded cavities and waveguides in three-dimensional silicon photonic crystals , 2008 .

[56]  Christopher R Lowe,et al.  Holographic lactate sensor. , 2006, Analytical chemistry.

[57]  Vincent Toal Introduction to Holography , 2011 .

[58]  Zhongze Gu,et al.  Bio-inspired variable structural color materials. , 2012, Chemical Society reviews.

[59]  M. Wegener,et al.  Direct laser writing of three-dimensional photonic-crystal templates for telecommunications , 2004, Nature materials.

[60]  M. Madou,et al.  Genetically engineered protein in hydrogels tailors stimuli-responsive characteristics , 2005, Nature Materials.

[61]  Yadong Yin,et al.  Responsive photonic crystals. , 2011, Angewandte Chemie.

[62]  S. Benton,et al.  Holographic Imaging , 2008 .

[63]  Dieter Meissner,et al.  Organic Solar Cells , 1991 .

[64]  M. Okano,et al.  Direct creation of three-dimensional photonic crystals by a top-down approach. , 2009, Nature materials.