Existence of infinitely many homoclinic orbits for fourth-order difference systems containing both advance and retardation

Abstract By using the symmetric mountain pass theorem, we establish some existence criteria to guarantee the fourth-order difference system Δ4u(n − 2) + q(n)u(n) = f(n, u(n + 1), u(n), u(n − 1)) have infinitely many homoclinic orbits, where n ∈ Z , u ∈ R N , q : Z → R N × N and f : Z × R 3 N → R are no periodic in n.

[1]  Vittorio Coti Zelati,et al.  Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials , 1991 .

[2]  Shiping Lu,et al.  Homoclinic solutions for nonautonomous second-order Hamiltonian systems with a coercive potential , 2010 .

[3]  Yanheng Ding,et al.  Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems , 1995 .

[4]  Vieri Benci,et al.  Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity , 1983 .

[5]  Ivar Ekeland,et al.  A variational approach to homolinic orbits in Hamiltonian systems , 1990 .

[6]  M. Willem,et al.  Homoclinic orbits for a class of Hamiltonian systems , 1992, Differential and Integral Equations.

[7]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[8]  Zhiming Guo,et al.  Homoclinic orbits and subharmonics for nonlinear second order difference equations , 2007 .

[9]  Hui Fang,et al.  Existence of nontrivial homoclinic orbits for fourth-order difference equations , 2009, Appl. Math. Comput..

[10]  Donal O'Regan,et al.  Multiple positive solutions of singular discrete p-Laplacian problems via variational methods , 2005 .

[11]  Jianshe Yu,et al.  Existence of periodic and subharmonic solutions for second-order superlinear difference equations , 2003 .

[12]  Xianhua Tang,et al.  Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems , 2011 .

[13]  Jianshe Yu,et al.  The Existence of Periodic and Subharmonic Solutions of Subquadratic Second Order Difference Equations , 2003 .

[14]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[15]  Zhiming Guo,et al.  Homoclinic orbits for second order self-adjoint difference equations , 2006 .

[16]  Chun-Lei Tang,et al.  Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system , 2007 .

[17]  Michel Willem,et al.  Solitary waves with prescribed speed on infinite lattices , 1997 .

[18]  Peixuan Weng,et al.  Existence and multiple solutions for a second-order difference boundary value problem via critical point theory , 2007 .

[19]  P. Rabinowitz,et al.  Some results on connecting orbits for a class of Hamiltonian systems , 1991 .

[20]  Marek Izydorek,et al.  Homoclinic solutions for a class of the second order Hamiltonian systems , 2005 .

[21]  Ravi P. Agarwal,et al.  Periodic solutions of first order linear difference equations , 1995 .

[22]  Jianshe Yu,et al.  Homoclinic orbits for nonlinear difference equations containing both advance and retardation , 2009 .

[23]  Zhan Zhou,et al.  Periodic solutions of higher-dimensional discrete systems , 2004, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[24]  Existence of homoclinic solution for the second order Hamiltonian systems , 2004 .

[25]  C. Ahlbrandt,et al.  Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations , 1996 .

[26]  Yuhua Long,et al.  Subharmonic Solutions with Prescribed Minimal Period of a Discrete Forced Pendulum Equation , 2004 .

[27]  X. Zou,et al.  Periodic Solutions of Second Order Self‐Adjoint Difference Equations , 2005 .

[28]  J. Mawhin,et al.  Critical Point Theory and Hamiltonian Systems , 1989 .

[29]  Jianshe Yu,et al.  Periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems , 2003 .

[30]  Xianhua Tang,et al.  Homoclinic solutions for a class of second-order Hamiltonian systems☆ , 2009 .