Accelerated Correction of Reflection Artifacts by Deep Neural Networks in Photo-Acoustic Tomography

[1]  G. Uhlmann,et al.  Thermoacoustic tomography with variable sound speed , 2009, 0902.1973.

[2]  B. Cox,et al.  Photoacoustic tomography in absorbing acoustic media using time reversal , 2010 .

[3]  Muyinatu A. Lediju Bell,et al.  Photoacoustic Source Detection and Reflection Artifact Removal Enabled by Deep Learning , 2018, IEEE Transactions on Medical Imaging.

[4]  Yulia Hristova,et al.  Time reversal in thermoacoustic tomography—an error estimate , 2008, 0812.0606.

[5]  Uwe Kruger,et al.  Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction , 2019, Nat. Mach. Intell..

[6]  Habib Ammari,et al.  Mathematical Modeling in Photoacoustic Imaging of Small Absorbers , 2010, SIAM Rev..

[7]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[8]  Lihong V. Wang,et al.  Universal back-projection algorithm for photoacoustic computed tomography. , 2005 .

[9]  Ge Wang,et al.  A Perspective on Deep Imaging , 2016, IEEE Access.

[10]  Yang Yang,et al.  Multiwave tomography in a closed domain: averaged sharp time reversal , 2014, 1412.8262.

[11]  Otmar Scherzer,et al.  A direct method for photoacoustic tomography with inhomogeneous sound speed , 2015, 1507.01741.

[12]  Yang Yang,et al.  Multiwave tomography with reflectors: Landweber's iteration , 2016, 1603.07045.

[13]  Sebastian Acosta,et al.  Multiwave imaging in an enclosure with variable wave speed , 2015, 1501.07808.

[14]  Yang Yang,et al.  Thermo- and Photoacoustic Tomography with Variable Speed and Planar Detectors , 2016, SIAM J. Math. Anal..

[15]  C. McCollough,et al.  CT dose reduction and dose management tools: overview of available options. , 2006, Radiographics : a review publication of the Radiological Society of North America, Inc.

[16]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[17]  Jan Kautz,et al.  Loss Functions for Image Restoration With Neural Networks , 2017, IEEE Transactions on Computational Imaging.

[18]  P. Kuchment,et al.  Mathematics of thermoacoustic tomography , 2007, European Journal of Applied Mathematics.

[19]  B T Cox,et al.  k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. , 2010, Journal of biomedical optics.

[20]  Bruce R. Rosen,et al.  Image reconstruction by domain-transform manifold learning , 2017, Nature.

[21]  L. Landweber An iteration formula for Fredholm integral equations of the first kind , 1951 .

[22]  B T Cox,et al.  Photoacoustic tomography with a single detector in a reverberant cavity. , 2009, The Journal of the Acoustical Society of America.

[23]  Jeffrey A. Fessler,et al.  Image Reconstruction is a New Frontier of Machine Learning , 2018, IEEE Transactions on Medical Imaging.

[24]  Linh V. Nguyen,et al.  Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media , 2008 .

[25]  Guang Li,et al.  CT Super-Resolution GAN Constrained by the Identical, Residual, and Cycle Learning Ensemble (GAN-CIRCLE) , 2018, IEEE Transactions on Medical Imaging.

[26]  Junjie Yao,et al.  Photoacoustic tomography: fundamentals, advances and prospects. , 2011, Contrast media & molecular imaging.

[27]  Hongkai Zhao,et al.  An Efficient Neumann Series-Based Algorithm for Thermoacoustic and Photoacoustic Tomography with Variable Sound Speed , 2011, SIAM J. Imaging Sci..

[28]  Andreas Hauptmann,et al.  Model-Based Learning for Accelerated, Limited-View 3-D Photoacoustic Tomography , 2017, IEEE Transactions on Medical Imaging.

[29]  Stephan Antholzer,et al.  Deep learning for photoacoustic tomography from sparse data , 2017, Inverse problems in science and engineering.

[30]  B. Holman,et al.  Gradual time reversal in thermo- and photo-acoustic tomography within a resonant cavity , 2014 .

[31]  Steven Guan,et al.  Fully Dense UNet for 2-D Sparse Photoacoustic Tomography Artifact Removal , 2018, IEEE Journal of Biomedical and Health Informatics.

[32]  Sean Holman,et al.  A continuous adjoint for photo-acoustic tomography of the brain , 2018, Inverse Problems.

[33]  Ashkan Javaherian,et al.  Direct quantitative photoacoustic tomography for realistic acoustic media , 2018, Inverse Problems.

[34]  Habib Ammari,et al.  Transient Wave Imaging with Limited-View Data , 2011, SIAM J. Imaging Sci..

[35]  Ge Wang,et al.  Structurally-Sensitive Multi-Scale Deep Neural Network for Low-Dose CT Denoising , 2018, IEEE Access.

[36]  Linh V. Nguyen,et al.  A Dissipative Time Reversal Technique for Photoacoustic Tomography in a Cavity , 2015, SIAM J. Imaging Sci..

[37]  Hongming Shan,et al.  3-D Convolutional Encoder-Decoder Network for Low-Dose CT via Transfer Learning From a 2-D Trained Network , 2018, IEEE Transactions on Medical Imaging.

[38]  Lihong V. Wang,et al.  Photoacoustic tomography: principles and advances. , 2016, Electromagnetic waves.

[39]  Plamen Stefanov,et al.  Thermoacoustic tomography arising in brain imaging , 2010, 1009.1687.