Power-law tailed statistical distributions and Lorentz transformations

Abstract The present Letter, deals with the statistical theory [G. Kaniadakis, Phys. Rev. E 66 (2002) 056125; G. Kaniadakis, Phys. Rev. E 72 (2005) 036108], which predicts the probability distribution p ( E ) ∝ exp κ ( − I ) , where, I ∝ β E − β μ , is the collision invariant, and exp κ ( x ) = ( 1 + κ 2 x 2 + κ x ) 1 / κ , with κ 2 1 . This, experimentally observed distribution, at low energies behaves as the Maxwell–Boltzmann exponential distribution, while at high energies presents power law tails. Here we show that the function exp κ ( x ) and its inverse ln κ ( x ) , can be obtained within the one-particle relativistic dynamics, in a very simple and transparent way, without invoking any extra principle or assumption, starting directly from the Lorentz transformations. The achievements support the idea that the power law tailed distributions are enforced by the Lorentz relativistic microscopic dynamics, like in the case of the exponential distribution which follows from the Newton classical microscopic dynamics.

[1]  A. Y. Abul-Magd,et al.  Nonextensive and superstatistical generalizations of random-matrix theory , 2009, 0902.2943.

[2]  G. Kaniadakis,et al.  Relativistic kinetics and power-law–tailed distributions , 2010, 1012.3903.

[3]  Giorgio Kaniadakis,et al.  κ-generalized statistics in personal income distribution , 2007 .

[4]  H. G. Miller,et al.  κ-DEFORMED STATISTICS AND THE FORMATION OF A QUARK-GLUON PLASMA , 2003 .

[5]  Thomas Oikonomou,et al.  A completeness criterion for Kaniadakis, Abe and two-parameter generalized statistical theories , 2010 .

[6]  Giorgio Kaniadakis,et al.  A κ-entropic approach to the analysis of the fracture problem , 2004 .

[7]  R. Silva The relativistic statistical theory and Kaniadakis entropy: an approach through a molecular chaos hypothesis , 2006 .

[8]  R. Silva,et al.  Non-Gaussian statistics and the relativistic nuclear equation of state , 2009, 0902.2383.

[9]  G. Kaniadakis,et al.  Non-linear kinetics underlying generalized statistics , 2001 .

[10]  Denis Bolduc,et al.  The K-deformed multinomial logit model , 2005 .

[11]  A. M. Scarfone,et al.  Asymptotic solutions of a nonlinear diffusive equation in the framework of κ-generalized statistical mechanics , 2009 .

[12]  Giorgio Kaniadakis,et al.  A model of personal income distribution with application to Italian data , 2009 .

[13]  Sumiyoshi Abe,et al.  Stabilities of generalized entropies , 2004 .

[14]  Roberto Tonelli,et al.  Entropy Production and Pesin-Like Identity at the Onset of Chaos , 2004 .

[15]  A. M. Scarfone,et al.  Generalized kinetic equations for a system of interacting atoms and photons: theory and simulations , 2004 .

[16]  G. Kaniadakis,et al.  Relativistic entropy and related Boltzmann kinetics , 2009, 0901.1058.

[17]  J. Naudts Deformed exponentials and logarithms in generalized thermostatistics , 2002, cond-mat/0203489.

[18]  Giorgio Kaniadakis,et al.  The κ-generalized distribution: A new descriptive model for the size distribution of incomes , 2007, 0710.3645.

[19]  J. C. Carvalho,et al.  Power law statistics and stellar rotational velocities in the Pleiades , 2008, 0903.0836.

[20]  Tatsuaki Wada A nonlinear drift which leads to κ-generalized distributions , 2010 .

[21]  Dominique Rajaonarison,et al.  Deterministic heterogeneity in tastes and product differentiation in the K-logit model , 2008 .

[22]  J. D. Medeiros,et al.  Observational measurement of open stellar clusters: A test of Kaniadakis and Tsallis statistics , 2010 .

[23]  Jiulin Du,et al.  The two parameters (κ,r) in the generalized statistics , 2010 .

[24]  G. Kaniadakis H-theorem and generalized entropies within the framework of nonlinear kinetics , 2001 .

[25]  Jiulin Du,et al.  The κ parameter and κ-distribution in κ-deformed statistics for the systems in an external field , 2006, cond-mat/0610606.

[26]  J. Naudts CONTINUITY OF A CLASS OF ENTROPIES AND RELATIVE ENTROPIES , 2002, math-ph/0208038.

[27]  Roberto Tonelli,et al.  Statistical descriptions of nonlinear systems at the onset of chaos , 2006 .

[28]  A. Y. Abul-Magd Nonextensive random-matrix theory based on Kaniadakis entropy , 2007 .

[29]  A. Olemskoi,et al.  Multifractal spectrum of phase space related to generalized thermostatistics , 2006, cond-mat/0602545.

[30]  T. Wada,et al.  κ-generalization of Gauss' law of error , 2006 .

[31]  Tatsuaki Wada,et al.  Canonical Partition Function for Anomalous Systems Described by the κ-Entropy(COMPLEXITY AND NONEXTENSIVITY:NEW TRENDS IN STATISTICAL MECHANICS) , 2006 .

[32]  R. Silva,et al.  The H-theorem in κ-statistics : influence on the molecular chaos hypothesis , 2006 .

[33]  A. M. Scarfone,et al.  Lesche stability of κ-entropy , 2004 .

[34]  Giovanni Pistone κ-exponential models from the geometrical viewpoint , 2009, 0903.2012.

[35]  J. C. Carvalho,et al.  NON-GAUSSIAN STATISTICS AND STELLAR ROTATIONAL VELOCITIES OF MAIN-SEQUENCE FIELD STARS , 2009, 0903.0868.

[36]  Takuya Yamano,et al.  On the laws of thermodynamics from the escort average and on the uniqueness of statistical factors , 2003 .

[37]  Tatsuaki Wada,et al.  A two-parameter generalization of Shannon-Khinchin axioms and the uniqueness theorem , 2007 .

[38]  S. Borysov,et al.  Statistical field theories deformed within different calculi , 2010, 1004.2629.

[39]  Giorgio Kaniadakis,et al.  Relaxation of Relativistic Plasmas Under the Effect of Wave-Particle Interactions , 2007 .

[40]  Tatsuaki Wada,et al.  Thermodynamic stabilities of the generalized Boltzmann entropies , 2004 .

[41]  Zhipeng Liu,et al.  The property of κ-deformed statistics for a relativistic gas in an electromagnetic field: κ parameter and κ-distribution , 2007 .

[42]  G. Kaniadakis,et al.  Statistical mechanics in the context of special relativity. II. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  F. Topsøe Entropy and equilibrium via games of complexity , 2004 .

[44]  Ugur Tirnakli,et al.  Sensitivity function and entropy increase rates for z-logistic map family at the edge of chaos , 2006 .

[45]  G. Kaniadakis,et al.  Maximum entropy principle and power-law tailed distributions , 2009, 0904.4180.

[46]  Tatsuaki Wada Thermodynamic stability conditions for nonadditive composable entropies , 2004 .

[47]  R. Silva,et al.  Conservative Force Fields in Non-Gaussian Statistics , 2008, 0807.3382.