Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism

[1]  J. Wu,et al.  Heterojunction Nanowires of AgxZn1–xO–ZnO Photocatalytic and Antibacterial Activities under Visible-Light and Dark Conditions , 2015 .

[2]  W. Goessler,et al.  Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli , 2015, International journal of medical microbiology : IJMM.

[3]  S. Dwivedi,et al.  Reactive Oxygen Species Mediated Bacterial Biofilm Inhibition via Zinc Oxide Nanoparticles and Their Statistical Determination , 2014, PloS one.

[4]  Elsayed E. Hafez,et al.  Assessment Of Antibacterial Activity For Synthesized Zinc Oxide Nanorods Against Plant Pathogenic Strains , 2014 .

[5]  Y. Chevalier,et al.  The contribution of zinc ions to the antimicrobial activity of zinc oxide , 2014 .

[6]  A. Djurišić,et al.  Is the effect of surface modifying molecules on antibacterial activity universal for a given material? , 2014, Nanoscale.

[7]  C. Balachandran,et al.  Size-dependent antimicrobial response of zinc oxide nanoparticles. , 2014, IET nanobiotechnology.

[8]  S. Dwivedi,et al.  ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. , 2014, Colloids and surfaces. B, Biointerfaces.

[9]  C. Muthamizhchelvan,et al.  Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity. , 2014, Colloids and surfaces. B, Biointerfaces.

[10]  Jing Wang,et al.  Additive effect of zinc oxide nanoparticles and isoorientin on apoptosis in human hepatoma cell line. , 2014, Toxicology letters.

[11]  H. Hasan,et al.  Antibacterial responses of zinc oxide structures against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes , 2014 .

[12]  H. Hasan,et al.  Effect of surface modification and UVA photoactivation on antibacterial bioactivity of zinc oxide powder , 2014 .

[13]  S. Obare,et al.  Size-Dependent Antimicrobial Effects of Novel Palladium Nanoparticles , 2014, PloS one.

[14]  M. Taillard Challenges and Limitations , 2014 .

[15]  A. Hussain,et al.  Synthesis , antibacterial , lipoxygenase and urease inhibitory activities of 2-aminophenol derivatives , 2014 .

[16]  J. Iqbal,et al.  Sn doping induced enhancement in the activity of ZnO nanostructures against antibiotic resistant S. aureus bacteria , 2013, International journal of nanomedicine.

[17]  E. Choi,et al.  ZnO nanoparticles induces cell death in malignant human T98G gliomas, KB and non-malignant HEK cells. , 2013, Journal of biomedical nanotechnology.

[18]  G. N. Rao,et al.  Synthesis, characterization and optical properties of zinc oxide nanoparticles , 2013, International Nano Letters.

[19]  Jianping Xie,et al.  The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for gram-positive bacteria over erythrocytes. , 2013, Nanoscale.

[20]  Jing Zhang,et al.  Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property , 2013 .

[21]  Nasrin Talebian,et al.  Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. , 2013, Journal of photochemistry and photobiology. B, Biology.

[22]  Henriette M.C. Azeredo,et al.  Antimicrobial nanostructures in food packaging , 2013 .

[23]  H. Bi,et al.  Reactive oxygen species-induced cytotoxic effects of zinc oxide nanoparticles in rat retinal ganglion cells. , 2013, Toxicology in vitro : an international journal published in association with BIBRA.

[24]  D. Uskoković,et al.  Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents. , 2013, Colloids and surfaces. B, Biointerfaces.

[25]  Jianguo Guan,et al.  Polymorphous ZnO complex architectures: selective synthesis, mechanism, surface area and Zn-polar plane-codetermining antibacterial activity. , 2013, Journal of materials chemistry. B.

[26]  Christopher J. Tassone,et al.  FROM SYNTHESIS TO PROPERTIES AND APPLICATIONS , 2013 .

[27]  G. Annadurai,et al.  Antimicrobial activity of wet chemically engineered spherical shaped ZnO nanoparticles on food borne pathogen. , 2013 .

[28]  C. Muthamizhchelvan,et al.  From zinc oxide nanoparticles to microflowers: A study of growth kinetics and biocidal activity , 2012 .

[29]  A. Ng,et al.  Antibacterial activity of ZnO nanoparticles with a modified surface under ambient illumination , 2012, Nanotechnology.

[30]  Murugan Sevanan,et al.  Synthesis, Characterization, and Antimicrobial Activity of Zinc Oxide Nanoparticles Against Human Pathogens , 2012 .

[31]  R. Adelung,et al.  Crystal growth behaviour in Au-ZnO nanocomposite under different annealing environments and photoswitchability , 2012 .

[32]  Zarrindokht Emami‐Karvani,et al.  Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria , 2012 .

[33]  K. Landfester,et al.  Antibacterial Surface Coatings from Zinc Oxide Nanoparticles Embedded in Poly(N‐isopropylacrylamide) Hydrogel Surface Layers , 2012 .

[34]  Thomas J Webster,et al.  Antimicrobial applications of nanotechnology: methods and literature , 2012, International journal of nanomedicine.

[35]  Jaime E. Ramirez-Vick Nanostructured ZnO for Electrochemical Biosensors , 2012 .

[36]  M. Cortie,et al.  Zinc oxide particles: Synthesis, properties and applications , 2012 .

[37]  P. Espitia,et al.  Zinc Oxide Nanoparticles: Synthesis, Antimicrobial Activity and Food Packaging Applications , 2012, Food and Bioprocess Technology.

[38]  Benjamin Valdez,et al.  Scientific, Health and Social Aspects of the Food Industry , 2012 .

[39]  X. Liu,et al.  Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. , 2012, Acta biomaterialia.

[40]  Elias K. Stefanakos,et al.  Synthesis, characterization, and applications of ZnO nanowires , 2012 .

[41]  Lin Wei,et al.  Annealing effect on photovoltaic performance of CdSe quantum-dots-sensitized TiO 2 nanorod solar cells , 2012 .

[42]  Balaraman Kalyanaraman,et al.  Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. , 2012, Free radical biology & medicine.

[43]  Sandeep Kumar,et al.  Interaction Of ZnO Nanoparticles With Food Borne Pathogens Escherichia coli DH5α and Staphylococcus aureus 5021 & Their Bactericidal Efficacy , 2011 .

[44]  S. Cimmino,et al.  Food packaging based on polymer nanomaterials , 2011 .

[45]  J. Rička,et al.  Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport , 2011, Biomedical optics express.

[46]  Qasim Chaudhry,et al.  Food applications of nanotechnologies: An overview of opportunities and challenges for developing countries , 2011 .

[47]  S. Phanichphant,et al.  Antimicrobial Nanomaterials in the Textile Industry , 2011 .

[48]  Jide Zhang Silver-coated zinc oxide nanoantibacterial synthesis and antibacterial activity characterization , 2011, Proceedings of 2011 International Conference on Electronics and Optoelectronics.

[49]  T. V. Duncan,et al.  Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors , 2011, Journal of Colloid and Interface Science.

[50]  J. Endrino,et al.  Nanostructured TiO2 and TiO2-Ag Antimicrobial Thin Films , 2011, 2011 International Conference on Nanoscience, Technology and Societal Implications.

[51]  Mohamad Hafiz Mamat,et al.  Performance of an Ultraviolet Photoconductive Sensor Using Well-Aligned Aluminium-Doped Zinc-Oxide Nanorod Arrays Annealed in an Air and Oxygen Environment , 2011 .

[52]  F. Capasso,et al.  Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires , 2011, Nanoscale research letters.

[53]  Xiaohui Peng,et al.  Effect of morphology of ZnO nanostructures on their toxicity to marine algae. , 2011, Aquatic toxicology.

[54]  K. Jeyasubramanian,et al.  Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. , 2011, Nanomedicine : nanotechnology, biology, and medicine.

[55]  H. Karami,et al.  Synthesis and Characterization of ZnO Nanorods Based on a New Gel Pyrolysis Method , 2011 .

[56]  Ranjit T Koodali,et al.  Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[57]  A. Gedanken,et al.  Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury , 2011, Nanotechnology.

[58]  S. Mahmud One-dimensional growth of zinc oxide nanostructures from large micro-particles in a highly rapid synthesis , 2011 .

[59]  Baoan Chen,et al.  A strategy for ZnO nanorod mediated multi-mode cancer treatment. , 2011, Biomaterials.

[60]  Yuh-Jeen Huang,et al.  Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells. , 2011, The Science of the total environment.

[61]  Peter L. Irwin,et al.  Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles against Campylobacter jejuni , 2011, Applied and Environmental Microbiology.

[62]  Lizhong Zhu,et al.  Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. , 2011, Environmental science & technology.

[63]  B. Ashe A Detail investigation to observe the effect of zinc oxide and Silver nanoparticles in biological system. , 2011 .

[64]  Haritha Meruvu,et al.  SYNTHESIS AND CHARACTERIZATION OF ZINC OXIDE NANOPARTICLES AND ITS ANTIMICROBIAL ACTIVITY AGAINST BACILLUS SUBTILIS AND ESCHERICHIA COLI , 2011 .

[65]  Jing Guo,et al.  Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. , 2010, Toxicology letters.

[66]  T. Bora,et al.  Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods , 2010, Beilstein journal of nanotechnology.

[67]  Mohammad. Rasul,et al.  Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments , 2010 .

[68]  E. Martínez,et al.  Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications , 2010, Expert opinion on drug delivery.

[69]  Yingjie Zhu,et al.  Monodisperse α-Fe2O3 Mesoporous Microspheres: One-Step NaCl-Assisted Microwave-Solvothermal Preparation, Size Control and Photocatalytic Property , 2010, Nanoscale research letters.

[70]  Socio-ethical issues and nanotechnology development: Perspectives from India , 2010, 10th IEEE International Conference on Nanotechnology.

[71]  Hyung-Shik Shin,et al.  Formation of ZnO Micro-Flowers Prepared via Solution Process and their Antibacterial Activity , 2010, Nanoscale research letters.

[72]  L. Hanley,et al.  Antibacterial activity of dental composites containing zinc oxide nanoparticles. , 2010, Journal of biomedical materials research. Part B, Applied biomaterials.

[73]  S. Yun,et al.  Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route , 2010, Applied Microbiology and Biotechnology.

[74]  M. Abareshi,et al.  ZnO nanofluids: Green synthesis, characterization, and antibacterial activity , 2010 .

[75]  P. Puspitasari,et al.  Application of ZnO Nanoparticles EM Wave Detector Prepared by Sol-Gel and Self-Combustion Techniques , 2010 .

[76]  H. Sugimoto,et al.  Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions , 2010 .

[77]  Lan-sun Zheng,et al.  Shape-dependent antibacterial activities of Ag2O polyhedral particles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[78]  Yinjie J. Tang,et al.  Comparative eco-toxicities of nano-ZnO particles under aquatic and aerosol exposure modes. , 2010, Environmental science & technology.

[79]  Yueming Li,et al.  P25-graphene composite as a high performance photocatalyst. , 2010, ACS nano.

[80]  Benjamin Gilbert,et al.  Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. , 2010, ACS nano.

[81]  Ranjith G. Nair,et al.  Photocatalytic Activity of ZnO Nanopowders Synthesized by DC Thermal Plasma , 2010 .

[82]  A. Djurišić,et al.  Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility , 2010, Analytical and bioanalytical chemistry.

[83]  Deepthy Menon,et al.  Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells , 2009, Journal of materials science. Materials in medicine.

[84]  J. Teixeira,et al.  Engineering Aspects of Milk and Dairy Products , 2009 .

[85]  P. Chakrabarti,et al.  Role of surface adsorbed anionic species in antibacterial activity of ZnO quantum dots against Escherichia coli. , 2009, Journal of nanoscience and nanotechnology.

[86]  Anderson Janotti,et al.  Fundamentals of zinc oxide as a semiconductor , 2009 .

[87]  Kaja Kasemets,et al.  Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. , 2009, Toxicology in vitro : an international journal published in association with BIBRA.

[88]  Harry Friedmann,et al.  EPR Study of Visible Light-Induced ROS Generation by Nanoparticles of ZnO , 2009 .

[89]  Wei Jiang,et al.  Bacterial toxicity comparison between nano- and micro-scaled oxide particles. , 2009, Environmental pollution.

[90]  Erik N. Taylor,et al.  Reduced activity of Staphylococcus epidermidis in the presence of sonicated piezoelectric zinc oxide nanoparticles , 2009, 2009 IEEE 35th Annual Northeast Bioengineering Conference.

[91]  Chao Liu,et al.  Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition , 2009, Journal of applied toxicology : JAT.

[92]  Debnath Bhattacharyya,et al.  Nanotechnology, Big things from a Tiny World: a Review , 2009 .

[93]  Xiaodi Huang,et al.  The characterization of various ZnO nanostructures using field-emission SEM , 2008 .

[94]  Benjamin Gilbert,et al.  Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. , 2008, ACS nano.

[95]  Jee Yeon Kim,et al.  Developing a Testing Method for Antimicrobial Efficacy on TiO2 Photocatalytic Products , 2008 .

[96]  Yulong Ding,et al.  ZnO nanofluids – A potential antibacterial agent , 2008 .

[97]  W. K. Chan,et al.  Antibacterial activity of ZnO nanorods prepared by a hydrothermal method , 2008 .

[98]  Xueping Gao,et al.  Morphology−Function Relationship of ZnO: Polar Planes, Oxygen Vacancies, and Activity , 2008 .

[99]  Rajagopalan Vijayaraghavan,et al.  Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study , 2008, Science and technology of advanced materials.

[100]  J. Jansen,et al.  Synthesis, characterization, and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex. , 2008, Journal of biomedical materials research. Part A.

[101]  I. Dharmadasa,et al.  Growth and characterisation of electrodeposited ZnO thin films , 2008 .

[102]  Anne Kahru,et al.  Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. , 2008, Chemosphere.

[103]  Yunqing Kang,et al.  Toxicological effect of ZnO nanoparticles based on bacteria. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[104]  A. Manna,et al.  Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. , 2008, FEMS microbiology letters.

[105]  K. Robbie,et al.  Nanomaterials and nanoparticles: Sources and toxicity , 2007, Biointerphases.

[106]  G. E. Gadd,et al.  Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. , 2007, Environmental science & technology.

[107]  Fan Yang,et al.  A study on the antibacterial activity of one-dimensional ZnO nanowire arrays: effects of the orientation and plane surface. , 2007, Chemical communications.

[108]  Hyung-Kee Seo,et al.  Low temperature solution synthesis and characterization of ZnO nano-flowers , 2007 .

[109]  K. Feris,et al.  Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. , 2007, Applied physics letters.

[110]  Yulong Ding,et al.  Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids) , 2007 .

[111]  L. Schmidt‐Mende,et al.  ZnO - nanostructures, defects, and devices , 2007 .

[112]  Dae Hong Jeong,et al.  Antimicrobial effects of silver nanoparticles. , 2007, Nanomedicine : nanotechnology, biology, and medicine.

[113]  J. Song,et al.  Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia coli , 2007, Applied and Environmental Microbiology.

[114]  H. Jeng,et al.  Toxicity of Metal Oxide Nanoparticles in Mammalian Cells , 2006, Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering.

[115]  Pedro J J Alvarez,et al.  Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. , 2006, Water research.

[116]  Thomas J Webster,et al.  Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. , 2006, Journal of biomedical materials research. Part A.

[117]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[118]  Chi-Ming Che,et al.  Proteomic analysis of the mode of antibacterial action of silver nanoparticles. , 2006, Journal of proteome research.

[119]  M. Benedetti,et al.  Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. , 2006, Nano letters.

[120]  Robert N Grass,et al.  In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. , 2006, Environmental science & technology.

[121]  I. Kuskovsky,et al.  Doping Aspects of Zn-Based Wide-Band-Gap Semiconductors , 2006 .

[122]  Vikas Berry,et al.  Deposition of CTAB-terminated nanorods on bacteria to form highly conducting hybrid systems. , 2005, Journal of the American Chemical Society.

[123]  Z. Fan,et al.  Zinc oxide nanostructures: synthesis and properties. , 2005, Journal of nanoscience and nanotechnology.

[124]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[125]  P. Vary,et al.  Anatase TiO2 nanocomposites for antimicrobial coatings. , 2005, The journal of physical chemistry. B.

[126]  Paul Takhistov,et al.  Intelligent Packaging: Concepts and Applications , 2005 .

[127]  O. Yamamoto,et al.  Effect of lattice constant of zinc oxide on antibacterial characteristics , 2004, Journal of materials science. Materials in medicine.

[128]  Siddik Icli,et al.  Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust , 2004 .

[129]  Zhong Lin Wang Zinc oxide nanostructures: growth, properties and applications , 2004 .

[130]  J. Sawai Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. , 2003, Journal of microbiological methods.

[131]  Tetsuaki Tsuchido,et al.  Mode of Bactericidal Action of Silver Zeolite and Its Comparison with That of Silver Nitrate , 2003, Applied and Environmental Microbiology.

[132]  Raija Ahvenainen,et al.  Novel food Packaging techniques , 2003 .

[133]  Ling-Dong Sun,et al.  Control of ZnO Morphology via a Simple Solution Route , 2002 .

[134]  K. Klabunde,et al.  Metal Oxide Nanoparticles as Bactericidal Agents , 2002 .

[135]  P. Paseiro Losada,et al.  Active and intelligent packaging: applications and regulatory aspects , 2002, Food additives and contaminants.

[136]  J. M. Miller,et al.  Synthesis and properties of , 2002 .

[137]  I. Kirkinezos,et al.  Reactive oxygen species and mitochondrial diseases. , 2001, Seminars in cell & developmental biology.

[138]  O. Yamamoto,et al.  Influence of particle size on the antibacterial activity of zinc oxide , 2001 .

[139]  L. Kotra,et al.  High-Resolution Atomic Force Microscopy Studies of the Escherichia coli Outer Membrane: Structural Basis for Permeability , 2000 .

[140]  Kevin R. Messner,et al.  The Identification of Primary Sites of Superoxide and Hydrogen Peroxide Formation in the Aerobic Respiratory Chain and Sulfite Reductase Complex of Escherichia coli * , 1999, The Journal of Biological Chemistry.

[141]  D. Swerdlow,et al.  Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. , 1999, Bulletin of the World Health Organization.

[142]  S. Atmaca The Effect of Zinc On Microbial Growth , 1998 .

[143]  J. Sawai,et al.  Hydrogen Peroxide as an Antibacterial Factor in Zinc Oxide Powder Slurry , 1998 .

[144]  J. Sawai,et al.  Detection of Active Oxygen Generated from Ceramic Powders Having Antibacterial Activity , 1996 .

[145]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[146]  F. A. Kröger Imperfection chemistry of crystalline solids , 1974 .

[147]  N. Nachtrieb,et al.  The chemistry of imperfect crystals , 1973 .