Multi‐tissue transcriptome‐wide association study reveals susceptibility genes and drug targets for insulin resistance‐relevant phenotypes

Genome‐wide association studies (GWAS) have identified multiple susceptibility loci associated with insulin resistance (IR)‐relevant phenotypes. However, the genes responsible for these associations remain largely unknown. We aim to identify susceptibility genes for IR‐relevant phenotypes via a transcriptome‐wide association study.

[1]  C. Gieger,et al.  Genome-wide association study and functional characterisation identifies candidate genes for insulin-stimulated glucose uptake , 2023, Nature Genetics.

[2]  I. Ntalla,et al.  Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis , 2022, Genome Biology.

[3]  Christopher D. Brown,et al.  A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids. , 2022, American journal of human genetics.

[4]  Hanmei Xu,et al.  Trends in insulin resistance: insights into mechanisms and therapeutic strategy , 2022, Signal Transduction and Targeted Therapy.

[5]  Christopher D. Brown,et al.  The power of genetic diversity in genome-wide association studies of lipids , 2021, Nature.

[6]  Yuzong Chen,et al.  Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents , 2021, Nucleic Acids Res..

[7]  Tanya M. Teslovich,et al.  The trans-ancestral genomic architecture of glycemic traits , 2021, Nature Genetics.

[8]  P. Matafome,et al.  Dopamine D2 receptor agonist, bromocriptine, remodels adipose tissue dopaminergic signalling and upregulates catabolic pathways, improving metabolic profile in type 2 diabetes , 2021, Molecular metabolism.

[9]  Yan Guo,et al.  Transcriptome-wide association study identifies multiple genes associated with childhood body mass index , 2021, International Journal of Obesity.

[10]  E. Gamazon,et al.  A unified framework for joint-tissue transcriptome-wide association and Mendelian Randomization analysis , 2020, Nature Genetics.

[11]  Michael Wainberg,et al.  Opportunities and challenges for transcriptome-wide association studies , 2019, Nature Genetics.

[12]  P. Chaurand,et al.  Mild Methylenetetrahydrofolate Reductase Deficiency Alters Inflammatory and Lipid Pathways in Liver , 2018, Molecular nutrition & food research.

[13]  R. Eckel,et al.  Pathogenesis of Lipid Disorders in Insulin Resistance: a Brief Review , 2018, Current Diabetes Reports.

[14]  Tanya M. Teslovich,et al.  Genetics of Blood Lipids Among ~300,000 Multi-Ethnic Participants of the Million Veteran Program , 2018, Nature Genetics.

[15]  R. Deberardinis,et al.  Metabolic regulation of transcription through compartmentalized NAD+ biosynthesis , 2018, Science.

[16]  A. Chen-Plotkin,et al.  The Post-GWAS Era: From Association to Function. , 2018, American journal of human genetics.

[17]  David S. Wishart,et al.  DrugBank 5.0: a major update to the DrugBank database for 2018 , 2017, Nucleic Acids Res..

[18]  Judith A. Blake,et al.  Mouse Genome Database (MGD)-2018: knowledgebase for the laboratory mouse , 2017, Nucleic Acids Res..

[19]  Angela N. Brooks,et al.  A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles , 2017, Cell.

[20]  D. Clyde Disease genomics: Transitioning from association to causation with eQTLs , 2017, Nature Reviews Genetics.

[21]  E. Schleicher,et al.  The impact of insulin resistance on the kidney and vasculature , 2016, Nature Reviews Nephrology.

[22]  Andrew D. Johnson,et al.  Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance , 2016, Nature Genetics.

[23]  Cristian Pattaro,et al.  Mendelian Randomization as an Approach to Assess Causality Using Observational Data. , 2016, Journal of the American Society of Nephrology : JASN.

[24]  Alexander Gusev,et al.  Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights , 2016, Nature Genetics.

[25]  May E. Montasser,et al.  Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci , 2016, Diabetes.

[26]  M. Uesugi,et al.  Dopamine D2 Receptor-Mediated Regulation of Pancreatic β Cell Mass , 2016, Stem cell reports.

[27]  P. Visscher,et al.  Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets , 2016, Nature Genetics.

[28]  Hubert Preissl,et al.  Impaired insulin action in the human brain: causes and metabolic consequences , 2015, Nature Reviews Endocrinology.

[29]  Yakir A Reshef,et al.  Partitioning heritability by functional annotation using genome-wide association summary statistics , 2015, Nature Genetics.

[30]  T. Lehtimäki,et al.  Integrative approaches for large-scale transcriptome-wide association studies , 2015, Nature Genetics.

[31]  Kaanan P. Shah,et al.  A gene-based association method for mapping traits using reference transcriptome data , 2015, Nature Genetics.

[32]  T. Assimes,et al.  Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene. , 2015, The Journal of clinical investigation.

[33]  G. Shulman Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. , 2014, The New England journal of medicine.

[34]  K. Petersen,et al.  The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes , 2014, Nature.

[35]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[36]  Shaodong Guo Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. , 2014, The Journal of endocrinology.

[37]  R. Fernando,et al.  Prediction of Complex Human Traits Using the Genomic Best Linear Unbiased Predictor , 2013, PLoS genetics.

[38]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[39]  Xiang Zhou,et al.  Polygenic Modeling with Bayesian Sparse Linear Mixed Models , 2012, PLoS genetics.

[40]  C. Kahn,et al.  Tissue–Specific Insulin Signaling, Metabolic Syndrome, and Cardiovascular Disease , 2012, Arteriosclerosis, thrombosis, and vascular biology.

[41]  Tanya M. Teslovich,et al.  Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways , 2012, Nature Genetics.

[42]  M. White,et al.  Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2 , 2012, Diabetologia.

[43]  May E. Montasser,et al.  A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance , 2012, Nature Genetics.

[44]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[45]  M. Blüher,et al.  A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism , 2012, Nature.

[46]  G. Shulman,et al.  Mechanisms for Insulin Resistance: Common Threads and Missing Links , 2012, Cell.

[47]  T. Friedman,et al.  Tissue-specific dysregulation of hexose-6-phosphate dehydrogenase and glucose-6-phosphate transporter production in db/db mice as a model of type 2 diabetes , 2011, Diabetologia.

[48]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[49]  J. Schrezenmeir,et al.  Common familial influences on clustering of metabolic syndrome traits with central obesity and insulin resistance: the Kiel obesity prevention study , 2007, International Journal of Obesity.

[50]  M. McCarthy,et al.  Heritability estimates for beta cell function and features of the insulin resistance syndrome in UK families with an increased susceptibility to Type 2 diabetes , 2004, Diabetologia.

[51]  L. Groop,et al.  Insulin sensitivity and insulin secretion in monozygotic and dizygotic twins , 2000, Diabetologia.

[52]  B. Howard Insulin resistance and lipid metabolism. , 1999, The American journal of cardiology.

[53]  G. Reaven,et al.  Evaluation of octreotide to assess insulin-mediated glucose disposal by the insulin suppression test , 1994, Diabetologia.

[54]  R. Turner,et al.  Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man , 1985, Diabetologia.

[55]  R. DeFronzo,et al.  Glucose clamp technique: a method for quantifying insulin secretion and resistance. , 1979, The American journal of physiology.

[56]  F. Schick,et al.  Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. , 2014, The New England journal of medicine.