Optical properties of the ocelli of Calliphora erythrocephala and their role in the dorsal light response

The 3 ocelli of the blowfly Calliphora erythrocephala, grouped close together on the top of the head (Fig. 1), have large, extensively overlapping visual fields. Together they view the entire upper hemisphere of the surroundings plus part of the lower hemisphere (Figs. 5, 7). It is shown for the lateral ocelli that despite the underfocussing of the ocellar lens large patterns are imaged on the receptor mosaic. Because of the astigmatism of the lens, patterns in longitudinal orientations are more accurately represented than in others (Fig. 3). Nevertheless, an artifical horizon rotated around the long axis of the animal does not elicit head roll. Likewise, changes of overall brightness in the visual field of the median and one lateral ocellus elicit only weak phasic-tonic “dorsal light responses” of the animal which supplement the tonic dorsal light responses mediated by the compound eyes (Figs. 9, 10). Our results show that, in Calliphora, the ocelli have little influence on head orientation during flight, and must be assumed to serve other functions.

[1]  Richard. Hesse,et al.  Das Sehen der Niederen Tiere , 1907 .

[2]  W. Wellington,et al.  Motor Responses Evoked By the Dorsal Ocelli of Sarcophaga Aldrichi Parker, and the Orientation of the fly to Plane Polarized Light , 1953, Nature.

[3]  P. Cornwell The Functions of the Ocelli of Calliphora (Diptera) and Locusta (Orthoptera) , 1955 .

[4]  J. Case,et al.  Differentiation of the effects of pH and CO2 on spiracular function of insects. , 1957, Journal of cellular and comparative physiology.

[5]  M. Karnovsky,et al.  A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron-microscopy , 1965 .

[6]  L. H. FINLAYSON,et al.  Insect Nervous System , 1966, Nature.

[7]  Roland Hengstenberg,et al.  Intracellular Staining of Insect Neurons with Procion Yellow , 1980 .

[8]  C. Taylor Contribution of Compound Eyes and Ocelli to Steering Of Locusts in Flight: I. Behavioural Analysis , 1981 .

[9]  L. Goodman,et al.  Organisation and Physiology of the Insect Dorsal Ocellar System , 1981 .

[10]  Christian Wehrhahn Ocellar vision and orientation in flies , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[11]  Zur Bedeutung der Ozellen für die Roll-Wahrnehmung bei Calliphora , 1985 .

[12]  R. Hengstenberg,et al.  Compensatory head roll in the blowfly Calliphora during flight , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[13]  G. Kastberger The ocelli control the flight course in honeybees , 1990 .

[14]  Y. Toh,et al.  Structure and function of the insect ocellus , 1991 .

[15]  J. Hillerton,et al.  Colonization of the mouse cadaver by flies in southern England , 1992, Medical and veterinary entomology.

[16]  R. Wehner ‘Matched filters’ — neural models of the external world , 1987, Journal of Comparative Physiology A.

[17]  Norbert Metschl Elektrophysiologische Untersuchungen an den Ocellen von Calliphora , 1963, Zeitschrift für vergleichende Physiologie.

[18]  H. Homann Zum Problem der Ocellenfunktion bei den Insekten , 1924, Zeitschrift für vergleichende Physiologie.

[19]  Gert Stange,et al.  The ocellar component of flight equilibrium control in dragonflies , 1981, Journal of comparative physiology.

[20]  Martin Wilson,et al.  The functional organisation of locust ocelli , 1978, Journal of comparative physiology.

[21]  D. Nässel,et al.  Ocellar interneurones in the blowfly Calliphora erythrocephala: Morphology and central projections , 1985, Cell and Tissue Research.

[22]  N. J. Strausfeld,et al.  Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and leg motor neuropil in Calliphora erythrocephala , 1985, Cell and Tissue Research.