Reverse Optical Flow for Self-Supervised Adaptive Autonomous Robot Navigation

Autonomous mobile robot navigation, either off-road or on ill-structured roads, presents unique challenges for machine perception. A successful terrain or roadway classifier must be able to learn in a self-supervised manner and adapt to inter- and intra-run changes in the local environment.This paper demonstrates the improvements achieved by augmenting an existing self-supervised image segmentation procedure with an additional supervisory input. Obstacles and roads may differ in appearance at distance because of illumination and texture frequency properties. Reverse optical flow is added as an input to the image segmentation technique to find examples of a region of interest at previous times in the past. This provides representations of this region at multiple scales and allows the robot to better determine where more examples of this class appear in the image.

[1]  A. G. Ulsoy,et al.  Decision making for road departure warning systems , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[2]  Sameer Singh,et al.  Minerva scene analysis benchmark , 2001, The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001.

[3]  Keith Redmill,et al.  A lane tracking system for intelligent vehicle applications , 2001, ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585).

[4]  Sebastian Thrun,et al.  Adaptive Road Following using Self-Supervised Learning and Reverse Optical Flow , 2005, Robotics: Science and Systems.

[5]  Avinash C. Kak,et al.  Vision for Mobile Robot Navigation: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Anthony Stentz,et al.  Optimal and efficient path planning for partially-known environments , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[7]  J. Kato,et al.  Modelisations markoviennes multiresolutions en vision par ordinateur. Application a la segmentation d'images spot , 1994 .

[8]  Martin Herman,et al.  Real-time obstacle avoidance using central flow divergence and peripheral flow , 2017, Proceedings of IEEE International Conference on Computer Vision.

[9]  Roberto Manduchi,et al.  Terrain perception for DEMO III , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[10]  Amir Shirkhodaie,et al.  Visual terrain mapping for traversable path planning of mobile robots , 2004, SPIE Optics East.

[11]  A. P. Dal Poz,et al.  DYNAMIC PROGRAMMING APPROACH FOR SEMI-AUTOMATED ROAD EXTRACTION FROM MEDIUM- AND HIGH-RESOLUTION IMAGES , 2003 .

[12]  Charles E. Thorpe,et al.  UNSCARF-a color vision system for the detection of unstructured roads , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[13]  Andrea Giachetti,et al.  The use of optical flow for road navigation , 1998, IEEE Trans. Robotics Autom..

[14]  Sandia Report,et al.  A Critical Review of the State-of-the-Art in Autonomous Land Vehicle Systems and Technology , 2001 .

[15]  Rodney A. Brooks,et al.  Visually-guided obstacle avoidance in unstructured environments , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[16]  Josiane Zerubia,et al.  Bayesian image classification using Markov random fields , 1996, Image Vis. Comput..

[17]  S. Kalsi,et al.  The DARPA compact superconducting X-ray lithography source features , 1991, Conference Record of the 1991 IEEE Particle Accelerator Conference.

[18]  Luis Montano,et al.  Goal directed reactive robot navigation with relocation using laser and vision , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[19]  Christopher Rasmussen,et al.  Combining laser range, color, and texture cues for autonomous road following , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[20]  Scott,et al.  Towards Flight Autonomy: Vision-Based Horizon Detection for Micro Air Vehicles , 1999 .

[21]  Don Ray Murray,et al.  Using Real-Time Stereo Vision for Mobile Robot Navigation , 2000, Auton. Robots.

[22]  Dong Joong Kang,et al.  Road lane segmentation using dynamic programming for active safety vehicles , 2003, Pattern Recognit. Lett..

[23]  Dean A. Pomerleau,et al.  RALPH: rapidly adapting lateral position handler , 1995, Proceedings of the Intelligent Vehicles '95. Symposium.

[24]  Roberto Manduchi,et al.  Obstacle Detection and Terrain Classification for Autonomous Off-Road Navigation , 2005, Auton. Robots.

[25]  Ian Horswill,et al.  Polly: A Vision-Based Artificial Agent , 1993, AAAI.

[26]  Junsu Lee,et al.  High Speed Road Boundary Detection with CNN-Based Dynamic Programming , 2002, IEEE Pacific Rim Conference on Multimedia.

[27]  Jonathan A. Bornstein,et al.  Overview of the Demo III UGV program , 1998, Defense, Security, and Sensing.

[28]  Josiane Zerubia,et al.  Satellite image classification using a modified Metropolis dynamics , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[29]  Steven Dubowsky,et al.  Terrain estimation for high-speed rough-terrain autonomous vehicle navigation , 2002, SPIE Defense + Commercial Sensing.

[30]  Illah R. Nourbakhsh,et al.  Appearance-Based Obstacle Detection with Monocular Color Vision , 2000, AAAI/IAAI.

[31]  J.-Y. Bouguet,et al.  Pyramidal implementation of the lucas kanade feature tracker , 1999 .

[32]  William A. Yasnoff,et al.  Error measures for scene segmentation , 1977, Pattern Recognit..

[33]  J. Andrew Bagnell,et al.  Improving Robot Navigation Through Self-Supervised Online Learning , 2006, Robotics: Science and Systems.

[34]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.