Hierarchical Statistical Shape Analysis and Prediction of Sub-Cortical Brain Structures

In this paper, we present the application of two multivariate statistical techniques to investigate how different structures within the brain vary statistically relative to each other. The first of these techniques is canonical correlation analysis which extracts and quantifies correlated behaviour between two sets of vector variables. The second technique is partial least squares regression which determines the best factors within a first set of vector variables for predicting a vector variable from a second set. We describe how these techniques can be used to quantify and predict correlated behaviour in sub-cortical structures within the brain using 3D MR images.

[1]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[2]  Daniel Rueckert,et al.  Canonical Correlation Analysis of Sub-cortical Brain Structures Using Non-rigid Registration , 2006, WBIR.

[3]  Karl J. Friston,et al.  Identifying global anatomical differences: Deformation‐based morphometry , 1998 .

[4]  Marleen de Bruijne,et al.  Quantitative Vertebral Morphometry Using Neighbor-Conditional Shape Models , 2006, MICCAI.

[5]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[6]  Karl J. Friston,et al.  Why Voxel-Based Morphometry Should Be Used , 2001, NeuroImage.

[7]  Dinggang Shen,et al.  Hierarchical active shape models, using the wavelet transform , 2003, IEEE Transactions on Medical Imaging.

[8]  Dinggang Shen,et al.  Predictive modeling of anatomic structures using canonical correlation analysis , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[9]  U. Grenander,et al.  Computational anatomy: an emerging discipline , 1998 .

[10]  Fred L. Bookstein,et al.  “Voxel-Based Morphometry” Should Not Be Used with Imperfectly Registered Images , 2001, NeuroImage.

[11]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[12]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[13]  Guang-Zhong Yang,et al.  Predictive cardiac motion modeling and correction with partial least squares regression , 2004, IEEE Transactions on Medical Imaging.

[14]  Ruzena Bajcsy,et al.  Multiresolution elastic matching , 1989, Comput. Vis. Graph. Image Process..

[15]  Karl J. Friston,et al.  Voxel-based morphometry , 2007 .

[16]  Michael I. Miller,et al.  Individualizing Anatomical Atlases of the Head , 1996, VBC.

[17]  Pierre Hellier,et al.  Hierarchical estimation of a dense deformation field for 3-D robust registration , 2001, IEEE Transactions on Medical Imaging.

[18]  R. Bajcsy,et al.  Elastically Deforming 3D Atlas to Match Anatomical Brain Images , 1993, Journal of computer assisted tomography.

[19]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[20]  Eam Khwang Teoh,et al.  A Novel 3D Partitioned Active Shape Model for Segmentation of Brain MR Images , 2005, MICCAI.

[21]  Matías N. Bossa,et al.  Statistical Model of Similarity Transformations: Building a Multi-Object Pose , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[22]  Sabine Van Huffel,et al.  Tissue segmentation and classification of MRSI data using canonical correlation analysis , 2005, Magnetic resonance in medicine.

[23]  Alan C. Evans,et al.  A Unified Statistical Approach to Deformation-Based Morphometry , 2001, NeuroImage.

[24]  Alejandro F Frangi,et al.  Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration , 2003, IEEE Transactions on Medical Imaging.

[25]  Timothy F. Cootes,et al.  Active Appearance Models , 1998, ECCV.

[26]  Morten Bro-Nielsen,et al.  Fast Fluid Registration of Medical Images , 1996, VBC.

[27]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[28]  J. V. Haxby,et al.  Spatial Pattern Analysis of Functional Brain Images Using Partial Least Squares , 1996, NeuroImage.

[29]  W. Eric L. Grimson,et al.  Exploratory Identification of Cardiac Noise in fMRI Images , 2003, MICCAI.