Toward accurate solvation dynamics of lanthanides and actinides in water using polarizable force fields: from gas-phase energetics to hydration free energies

In this contribution, we focused on the use of polarizable force fields to model the structural, energetic, and thermodynamical properties of lanthanides and actinides in water. In a first part, we chose the particular case of the Th(IV) cation to demonstrate the capabilities of the AMOEBA polarizable force field to reproduce both reference ab initio gas-phase energetics and experimental data including coordination numbers and radial distribution functions. Using such model, we predicted the first polarizable force field estimate of Th(IV) solvation free energy, which accounts for −1,638 kcal/mol. In addition, we proposed in a second part of this work a full extension of the SIBFA (Sum of Interaction Between Fragments Ab initio computed) polarizable potential to lanthanides (La(III) and Lu(III)) and to actinides (Th(IV)) in water. We demonstrate its capabilities to reproduce all ab initio contributions as extracted from energy decomposition analysis computations, including many-body charge transfer and discussed its applicability to extended molecular dynamics and its parametrization on high-level post-Hartree–Fock data.

[1]  D. Guillaumont,et al.  Solving the hydration structure of the heaviest actinide aqua ion known: the californium(III) case. , 2010, Angewandte Chemie.

[2]  D. Hagberg,et al.  Hydration of lanthanide chloride salts: a quantum chemical and classical molecular dynamics simulation study. , 2010, The journal of physical chemistry. B.

[3]  T. Darden,et al.  Towards a force field based on density fitting. , 2006, The Journal of chemical physics.

[4]  Thomas A. Halgren,et al.  The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters , 1992 .

[5]  Lester R. Morss,et al.  The chemistry of the actinide and transactinide elements , 2006 .

[6]  G. Chillemi,et al.  Revised ionic radii of lanthanoid(III) ions in aqueous solution. , 2011, Inorganic chemistry.

[7]  P. Vitorge,et al.  Polarizable interaction potential for molecular dynamics simulations of actinoids(III) in liquid water. , 2011, The Journal of chemical physics.

[8]  D. York,et al.  Multi-scale quantum models for biocatalysis : modern techniques and applications , 2009 .

[9]  J. Dognon,et al.  Molecular dynamics study of the hydration of lanthanum(III) and europium(III) including many-body effects. , 2005, The journal of physical chemistry. B.

[10]  Nohad Gresh,et al.  Toward a Separate Reproduction of the Contributions to the Hartree-Fock and DFT Intermolecular Interaction Energies by Polarizable Molecular Mechanics with the SIBFA Potential. , 2007, Journal of chemical theory and computation.

[11]  P. Vitorge,et al.  Building a polarizable pair interaction potential for lanthanoids(III) in liquid water: a molecular dynamics study of structure and dynamics of the whole series. , 2009, The Journal of chemical physics.

[12]  Nohad Gresh,et al.  Improved Formulas for the Calculation of the Electrostatic Contribution to the Intermolecular Interaction Energy from Multipolar Expansion of the Electronic Distribution. , 2003, The journal of physical chemistry. A.

[13]  David Beeman,et al.  Some Multistep Methods for Use in Molecular Dynamics Calculations , 1976 .

[14]  Nohad Gresh,et al.  Inclusion of the ligand field contribution in a polarizable molecular mechanics: SIBFA‐LF , 2003, J. Comput. Chem..

[15]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[16]  B. Schimmelpfennig,et al.  Quantum chemical and molecular dynamics study of the coordination of Th(IV) in aqueous solvent. , 2010, The journal of physical chemistry. B.

[17]  B. Hess,et al.  Dynamics and structure of Ln(III)-aqua ions: a comparative molecular dynamics study using ab initio based flexible and polarizable model potentials. , 2009, The journal of physical chemistry. B.

[18]  Pengyu Y. Ren,et al.  Towards accurate solvation dynamics of divalent cations in water using the polarizable amoeba force field: From energetics to structure. , 2006, The Journal of chemical physics.

[19]  L. Helm,et al.  Inorganic and bioinorganic solvent exchange mechanisms. , 2005, Chemical reviews.

[20]  S. Durell,et al.  Specificity of acyl transfer from 2-mercaptobenzamide thioesters to the HIV-1 nucleocapsid protein. , 2007, Journal of the American Chemical Society.

[21]  P. Claverie,et al.  The exact multicenter multipolar part of a molecular charge distribution and its simplified representations , 1988 .

[22]  J. Dognon,et al.  In silico prediction of atomic static electric-dipole polarizabilities of the early tetravalent actinide ions : Th4+ (5f0), Pa4+ (5f1), and U4+ (5f2) , 2008 .

[23]  I. Bányai,et al.  The Rates and Mechanisms of Water Exchange of Actinide Aqua Ions: A Variable Temperature17O NMR Study of U(H2O)104+, UF(H2O)93+, and Th(H2O)104+ , 2000 .

[24]  Yizhak Marcus,et al.  A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes , 1994 .

[25]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[26]  J. Dognon,et al.  Modeling of uranyl cation-water clusters , 2003 .

[27]  Jean-Philip Piquemal,et al.  Electron Pair Localization Function (EPLF) for Density Functional Theory and ab Initio Wave Function-Based Methods: A New Tool for Chemical Interpretation. , 2011, Journal of chemical theory and computation.

[28]  O Engkvist,et al.  Accurate Intermolecular Potentials Obtained from Molecular Wave Functions: Bridging the Gap between Quantum Chemistry and Molecular Simulations. , 2000, Chemical reviews.

[29]  W. J. Stevens,et al.  Transferability of molecular distributed polarizabilities from a simple localized orbital based method , 1989 .

[30]  K. Raymond,et al.  From antenna to assay: lessons learned in lanthanide luminescence. , 2009, Accounts of chemical research.

[31]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[32]  P. Burns,et al.  Structure of the Homoleptic Thorium(IV) Aqua Ion [Th(H2O)10]Br4. , 2007, Angewandte Chemie.

[33]  Laura Gagliardi,et al.  A quantum chemical and molecular dynamics study of the coordination of Cm(III) in water. , 2007, Journal of the American Chemical Society.

[34]  Kazuo Kitaura,et al.  A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation , 1976 .

[35]  Alan Grossfield,et al.  Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential. , 2006, The journal of physical chemistry. B.

[36]  C. Madic,et al.  Actinide Separation Science and Technology , 2010 .

[37]  Z. Hou,et al.  Recent developments in organolanthanide polymerization catalysts , 2002 .

[38]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[39]  Nicholas J Long,et al.  Lanthanides in magnetic resonance imaging. , 2006, Chemical Society reviews.

[40]  B. Roos,et al.  The coordination of uranyl in water: a combined quantum chemical and molecular simulation study. , 2005, Journal of the American Chemical Society.

[41]  F. Calvo,et al.  Theoretical study of the hydrated Gd3+ ion: structure, dynamics, and charge transfer. , 2006, The Journal of chemical physics.

[42]  N. Gresh,et al.  Role of Cation Polarization in holo- and hemi-Directed [Pb(H2O)n](2+) Complexes and Development of a Pb(2+) Polarizable Force Field. , 2011, Journal of chemical theory and computation.

[43]  Nohad Gresh,et al.  Representation of Zn(II) complexes in polarizable molecular mechanics. Further refinements of the electrostatic and short‐range contributions. Comparisons with parallel ab initio computations , 2005, J. Comput. Chem..

[44]  B. Hartke,et al.  Photodissociation dynamics of H2S on new coupled ab initio potential energy surfaces , 1999 .

[45]  P. Vitorge,et al.  A dynamic model to explain hydration behaviour along the lanthanide series. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[46]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[47]  T. Kowall,et al.  MOLECULAR DYNAMICS SIMULATION STUDY OF LANTHANIDE IONS LN3+ IN AQUEOUS SOLUTION INCLUDING WATER POLARIZATION. CHANGE IN COORDINATION NUMBER FROM 9 TO 8 ALONG THE SERIES , 1995 .

[48]  F. Calvo,et al.  Gd(III) polyaminocarboxylate chelate: realistic many-body molecular dynamics simulations for molecular imaging applications. , 2006, The journal of physical chemistry. B.

[49]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[50]  Pengyu Y. Ren,et al.  Ion solvation thermodynamics from simulation with a polarizable force field. , 2003, Journal of the American Chemical Society.

[51]  D. Lundberg,et al.  Hydration and hydrolysis of thorium(IV) in aqueous solution and the structures of two crystalline thorium(IV) hydrates. , 2009, Inorganic chemistry.

[52]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[53]  Éva Tóth,et al.  The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging , 2013 .

[54]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[55]  Nohad Gresh,et al.  Anisotropic, Polarizable Molecular Mechanics Studies of Inter- and Intramolecular Interactions and Ligand-Macromolecule Complexes. A Bottom-Up Strategy. , 2007, Journal of chemical theory and computation.

[56]  Klaus Hermann,et al.  On the nature of the bonding of lone pair ligands to a transition metal , 1984 .

[57]  William H. Fink,et al.  Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer , 1987 .

[58]  F. David,et al.  Thermodynamic properties of some tri- and tetravalent actinide aquo ions , 2003 .

[59]  Nohad Gresh,et al.  Binding of 5‐phospho‐D‐arabinonohydroxamate and 5‐phospho‐D‐arabinonate inhibitors to zinc phosphomannose isomerase from Candida albicans studied by polarizable molecular mechanics and quantum mechanics , 2007, J. Comput. Chem..

[60]  W. S. Benedict,et al.  Rotation‐Vibration Spectra of Deuterated Water Vapor , 1956 .

[61]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[62]  Jean-Philip Piquemal,et al.  A CSOV study of the difference between HF and DFT intermolecular interaction energy values: The importance of the charge transfer contribution , 2005, J. Comput. Chem..

[63]  Jean-Philip Piquemal,et al.  Polarizable molecular dynamics simulation of Zn(II) in water using the AMOEBA force field. , 2010, Journal of Chemical Theory and Computation.

[64]  Yue Shi,et al.  Multipole electrostatics in hydration free energy calculations , 2011, J. Comput. Chem..