When an optimal dominating set with given constraints exists
暂无分享,去创建一个
Omid Etesami | Michel Habib | Reza Naserasr | Pouyeh Sharifani | M. R. Hooshmandasl | N. Ghareghani | Mohammad Reza Hooshmandasl | M. Habib | R. Naserasr | O. Etesami | N. Ghareghani | P. Sharifani
[1] S. Hedetniemi,et al. Domination in graphs : advanced topics , 1998 .
[2] Teresa W. Haynes,et al. [1, 2]-sets in Graphs , 2013, Discret. Appl. Math..
[3] Italo J. Dejter,et al. Quasiperfect domination in triangular lattices , 2009, Discuss. Math. Graph Theory.
[4] Clive Elphick,et al. Conjectured bounds for the sum of squares of positive eigenvalues of a graph , 2014, Discret. Math..
[5] Jan Arne Telle,et al. Complexity of Domination-Type Problems in Graphs , 1994, Nord. J. Comput..
[6] Béla Bollobás,et al. Graph-theoretic parameters concerning domination, independence, and irredundance , 1979, J. Graph Theory.
[7] Arijit Ghosh,et al. (1, J)-set Problem in Graphs , 2016, Discret. Math..
[8] Xiaojing Yang,et al. [1, 2]-domination in Graphs , 2014, Discret. Appl. Math..
[9] Peter J. Slater,et al. Fundamentals of domination in graphs , 1998, Pure and applied mathematics.
[10] Jan Arne Telle,et al. Fast dynamic programming for locally checkable vertex subset and vertex partitioning problems , 2013, Theor. Comput. Sci..
[11] M. Vatshelle. New Width Parameters of Graphs , 2012 .
[12] Sigve Hortemo Sæther,et al. Faster algorithms for vertex partitioning problems parameterized by clique-width , 2013, Theor. Comput. Sci..
[13] Jan Arne Telle,et al. Algorithms for Vertex Partitioning Problems on Partial k-Trees , 1997, SIAM J. Discret. Math..
[14] Thomas J. Schaefer,et al. The complexity of satisfiability problems , 1978, STOC.
[15] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .
[16] Mohammad Reza Hooshmandasl,et al. [1, 2]-sets and [1, 2]-total Sets in Trees with Algorithms , 2016, Discret. Appl. Math..
[17] J. A. Telle. Vertex partitioning problems: characterization, complexity and algorithms on partial K-trees , 1994 .