Small molecule modulators of transcription.

Signal transduction cascades ultimately trigger transcriptional programs that are executed by transcription factors interacting with coactivator or corepressor proteins in large multi-protein complexes. Despite the difficulties associated with discovering and verifying potent antagonists (or agonists) of protein-protein interaction events, several small molecules have been identified within the last few years that modulate transcription by directly interacting with transcriptional proteins. Some of these small molecules display surprising selectivity and some even show efficacy in vivo. This review summarizes the current status in this developing field to illustrate the emerging opportunities in the chemical biology of transcription.

[1]  P. Vogt,et al.  A credit-card library approach for disrupting protein-protein interactions. , 2006, Bioorganic & medicinal chemistry.

[2]  K. Struhl,et al.  Activator-specific recruitment of Mediator in vivo , 2006, Nature Structural &Molecular Biology.

[3]  R. Fletterick,et al.  Discovery of Small Molecule Inhibitors of the Interaction of the Thyroid Hormone Receptor with Transcriptional Coregulators* , 2005, Journal of Biological Chemistry.

[4]  Arlin G. Cameron,et al.  Investigation of the binding determinants of phosphopeptides targeted to the SRC homology 2 domain of the signal transducer and activator of transcription 3. Development of a high-affinity peptide inhibitor. , 2005, Journal of medicinal chemistry.

[5]  A. Mapp,et al.  Stereochemical promiscuity in artificial transcriptional activators. , 2005, Journal of the American Chemical Society.

[6]  Mahavir Singh,et al.  Monitoring the effects of antagonists on protein-protein interactions with NMR spectroscopy. , 2005, Journal of the American Chemical Society.

[7]  H. Yin,et al.  Strategien zur Modulation von Protein‐Protein‐Wechselwirkungen mit synthetischen Substanzen , 2005 .

[8]  A. Hamilton,et al.  Strategies for targeting protein-protein interactions with synthetic agents. , 2005, Angewandte Chemie.

[9]  Michael G. Rosenfeld,et al.  Controlling nuclear receptors: the circular logic of cofactor cycles , 2005, Nature Reviews Molecular Cell Biology.

[10]  J. Deschamps,et al.  Structure-based design of potent non-peptide MDM2 inhibitors. , 2005, Journal of the American Chemical Society.

[11]  T. Kodadek,et al.  A potent transactivation domain mimic with activity in living cells. , 2005, Journal of the American Chemical Society.

[12]  Robert H Singer,et al.  Dynamics of transcription and mRNA export. , 2005, Current opinion in cell biology.

[13]  Roger D Kornberg,et al.  Mediator and the mechanism of transcriptional activation. , 2005, Trends in biochemical sciences.

[14]  Maxwell D Cummings,et al.  Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. , 2005, Journal of medicinal chemistry.

[15]  Kendall W Nettles,et al.  Ligand control of coregulator recruitment to nuclear receptors. , 2005, Annual review of physiology.

[16]  K. Gardner,et al.  Identification of small-molecule antagonists that inhibit an activator: coactivator interaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Protopopova,et al.  Small molecule RITA binds to p53, blocks p53–HDM-2 interaction and activates p53 function in tumors , 2004, Nature Medicine.

[18]  P. Dervan,et al.  Small molecule transcription factor mimic. , 2004, Journal of the American Chemical Society.

[19]  Vincent Laudet,et al.  Principles for modulation of the nuclear receptor superfamily , 2004, Nature Reviews Drug Discovery.

[20]  A. Mapp,et al.  A small molecule transcriptional activation domain. , 2004, Journal of the American Chemical Society.

[21]  C. Nguyên,et al.  A small molecule inhibitor of β-catenin/cyclic AMP response element-binding protein transcription , 2004 .

[22]  Tom Misteli,et al.  Global Nature of Dynamic Protein-Chromatin Interactions In Vivo: Three-Dimensional Genome Scanning and Dynamic Interaction Networks of Chromatin Proteins , 2004, Molecular and Cellular Biology.

[23]  D. Livingston,et al.  Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. , 2004, Cancer cell.

[24]  Kevin Struhl,et al.  A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II. , 2004, Molecular cell.

[25]  J. Schwabe,et al.  Mechanism of the nuclear receptor molecular switch. , 2004, Trends in biochemical sciences.

[26]  Michelle R. Arkin,et al.  Small-molecule inhibitors of protein–protein interactions: progressing towards the dream , 2004, Nature Reviews Drug Discovery.

[27]  J. Turkson,et al.  Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity. , 2004, Molecular cancer therapeutics.

[28]  M. Uesugi,et al.  A wrench-shaped synthetic molecule that modulates a transcription factor-coactivator interaction. , 2004, Journal of the American Chemical Society.

[29]  L. Vassilev,et al.  In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2 , 2004, Science.

[30]  Hua Yu,et al.  The STATs of cancer — new molecular targets come of age , 2004, Nature Reviews Cancer.

[31]  J. Katzenellenbogen,et al.  Design, synthesis, and in vitro biological evaluation of small molecule inhibitors of estrogen receptor α coactivator binding , 2004 .

[32]  Frank Petersen,et al.  Small-molecule antagonists of the oncogenic Tcf/β-catenin protein complex , 2004 .

[33]  Heike Brand,et al.  Estrogen Receptor-α Directs Ordered, Cyclical, and Combinatorial Recruitment of Cofactors on a Natural Target Promoter , 2003, Cell.

[34]  Chinmay Y. Majmudar,et al.  Targeting the transcriptional machinery with unique artificial transcriptional activators. , 2003, Journal of the American Chemical Society.

[35]  John S Lazo,et al.  Low molecular weight inhibitors of Myc–Max interaction and function , 2003, Oncogene.

[36]  Yong Wang,et al.  Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor–coactivator interactions , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[37]  R. Tjian,et al.  Transcription regulation and animal diversity , 2003, Nature.

[38]  S. Teague Implications of protein flexibility for drug discovery , 2003, Nature Reviews Drug Discovery.

[39]  Stuart L Schreiber,et al.  Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity-oriented synthesis. , 2003, Journal of the American Chemical Society.

[40]  T. Berg Modulation von Protein‐Protein‐Wechselwirkungen mit niedermolekularen organischen Molekülen , 2003 .

[41]  T. Berg Modulation of protein-protein interactions with small organic molecules. , 2003, Angewandte Chemie.

[42]  P. Dervan,et al.  Recognition of the DNA minor groove by pyrrole-imidazole polyamides. , 2003, Current opinion in structural biology.

[43]  R Kiplin Guy,et al.  Novel selective inhibitors of the interaction of individual nuclear hormone receptors with a mutually shared steroid receptor coactivator 2. , 2003, Journal of the American Chemical Society.

[44]  T. Tahirov,et al.  Eukaryotic transcriptional regulatory complexes: cooperativity from near and afar. , 2003, Current opinion in structural biology.

[45]  P. Chène Inhibiting the p53–MDM2 interaction: an important target for cancer therapy , 2003, Nature Reviews Cancer.

[46]  R. Marmorstein,et al.  Modulation of DNA-binding domains for sequence-specific DNA recognition. , 2003, Gene.

[47]  Hiroshi Kimura,et al.  The transcription cycle of RNA polymerase II in living cells , 2002, The Journal of cell biology.

[48]  A. Ansari,et al.  Modular design of artificial transcription factors. , 2002, Current opinion in chemical biology.

[49]  J. Darnell Transcription factors as targets for cancer therapy , 2002, Nature Reviews Cancer.

[50]  Xin Lu,et al.  Live or let die: the cell's response to p53 , 2002, Nature Reviews Cancer.

[51]  M. Boube,et al.  Evidence for a Mediator of RNA Polymerase II Transcriptional Regulation Conserved from Yeast to Man , 2002, Cell.

[52]  D. Boger,et al.  Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Neil J. McKenna,et al.  Combinatorial Control of Gene Expression by Nuclear Receptors and Coregulators , 2002, Cell.

[54]  L. Penn,et al.  The myc oncogene: MarvelouslY Complex. , 2002, Advances in cancer research.

[55]  Á. Pascual,et al.  Nuclear hormone receptors and gene expression. , 2001, Physiological reviews.

[56]  R. Goodman,et al.  CREB-binding Protein and p300 in Transcriptional Regulation* , 2001, The Journal of Biological Chemistry.

[57]  R. Guy,et al.  An inhibitor of the interaction of thyroid hormone receptor beta and glucocorticoid interacting protein 1. , 2001, Journal of the American Chemical Society.

[58]  R. Tjian,et al.  Transcriptional coactivator complexes. , 2001, Annual review of biochemistry.

[59]  T. A. Graham,et al.  Crystal Structure of a β-Catenin/Tcf Complex , 2000, Cell.

[60]  H. Clevers,et al.  Linking Colorectal Cancer to Wnt Signaling , 2000, Cell.

[61]  Shigeki Satoh,et al.  Non-Amide-Based Combinatorial Libraries Derived fromN-Boc-Iminodiacetic Acid: Solution-Phase Synthesis of Piperazinone Libraries with Activity Against LEF-1/β-Catenin-Mediated Transcription , 2000 .

[62]  R. Young,et al.  Transcription of eukaryotic protein-coding genes. , 2000, Annual review of genetics.

[63]  R. Mantovani,et al.  The molecular biology of the CCAAT-binding factor NF-Y. , 1999, Gene.

[64]  E. Prochownik,et al.  MYC oncogenes and human neoplastic disease , 1999, Oncogene.

[65]  Paul Polakis,et al.  The oncogenic activation of β-catenin , 1999 .

[66]  C. Wolberger,et al.  Multiprotein-DNA complexes in transcriptional regulation. , 1999, Annual review of biophysics and biomolecular structure.

[67]  G. Stark,et al.  How cells respond to interferons. , 1998, Annual review of biochemistry.

[68]  M. Uesugi,et al.  A nonnatural transcriptional coactivator. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[69]  K. Kinzler,et al.  Constitutive Transcriptional Activation by a β-Catenin-Tcf Complex in APC−/− Colon Carcinoma , 1997, Science.

[70]  A. Levine,et al.  Structure of the MDM2 Oncoprotein Bound to the p53 Tumor Suppressor Transactivation Domain , 1996, Science.

[71]  Jun Ma,et al.  A new class of yeast transcriptional activators , 1987, Cell.