Context-sensitive ranking

Contextual preferences take the form that item i1 is preferred to item i2 in the context of X. For example, a preference might state the choice for Nicole Kidman over Penelope Cruz in drama movies, whereas another preference might choose Penelope Cruz over Nicole Kidman in the context of Spanish dramas. Various sources provide preferences independently and thus preferences may contain cycles and contradictions. We reconcile democratically the preferences accumulated from various sources and use them to create a priori orderings of tuples in an off-line preprocessing step. Only a few representative orders are saved, each corre-sponding to a set of contexts. These orders and associated contexts are used at query time to expeditiously provide ranked answers. We formally define contextual preferences, provide algorithms for creating orders and processing queries, and present experimental results that show their efficacy and practical utility.

[1]  R. Graham,et al.  Spearman's Footrule as a Measure of Disarray , 1977 .

[2]  David B. Shmoys,et al.  A Best Possible Heuristic for the k-Center Problem , 1985, Math. Oper. Res..

[3]  Jun Fujiki,et al.  Clustering Orders , 2003, Discovery Science.

[4]  Thorsten Joachims,et al.  Learning a Distance Metric from Relative Comparisons , 2003, NIPS.

[5]  Georgia Koutrika,et al.  Personalized queries under a generalized preference model , 2005, 21st International Conference on Data Engineering (ICDE'05).

[6]  Gerhard Weikum,et al.  Probabilistic Ranking of Database Query Results , 2004, VLDB.

[7]  Georgia Koutrika,et al.  Personalization of queries in database systems , 2004, Proceedings. 20th International Conference on Data Engineering.

[8]  Heikki Mannila,et al.  Relational link-based ranking , 2004, VLDB.

[9]  Matthew Richardson,et al.  The Intelligent surfer: Probabilistic Combination of Link and Content Information in PageRank , 2001, NIPS.

[10]  Rakesh Agrawal,et al.  On learning asymmetric dissimilarity measures , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[11]  Rakesh Agrawal,et al.  A framework for expressing and combining preferences , 2000, SIGMOD '00.

[12]  Taher H. Haveliwala Topic-sensitive PageRank , 2002, IEEE Trans. Knowl. Data Eng..

[13]  S HochbaumDorit,et al.  A Best Possible Heuristic for the k-Center Problem , 1985 .

[14]  Jon M. Kleinberg,et al.  Segmentation problems , 2004, JACM.

[15]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[16]  Lin Guo XRANK : Ranked Keyword Search over XML Documents , 2003 .

[17]  Werner Kießling,et al.  Foundations of Preferences in Database Systems , 2002, VLDB.

[18]  Ronald Fagin,et al.  Comparing and aggregating rankings with ties , 2004, PODS '04.

[19]  Marek Chrobak,et al.  The Reverse Greedy Algorithm for the Metric K-Median Problem , 2005, COCOON.

[20]  Ronald Fagin,et al.  Comparing top k lists , 2003, SODA '03.

[21]  Vagelis Hristidis,et al.  ObjectRank: Authority-Based Keyword Search in Databases , 2004, VLDB.

[22]  Ronald Fagin,et al.  Efficient similarity search and classification via rank aggregation , 2003, SIGMOD '03.

[23]  Aristides Gionis,et al.  Automated Ranking of Database Query Results , 2003, CIDR.

[24]  S. Sudarshan,et al.  Keyword searching and browsing in databases using BANKS , 2002, Proceedings 18th International Conference on Data Engineering.

[25]  Moni Naor,et al.  Optimal aggregation algorithms for middleware , 2001, PODS.

[26]  Bonnie Berger,et al.  Approximation alogorithms for the maximum acyclic subgraph problem , 1990, SODA '90.

[27]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[28]  Yoram Singer,et al.  Learning to Order Things , 1997, NIPS.

[29]  Jan Chomicki,et al.  Preference formulas in relational queries , 2003, TODS.

[30]  Bernhard Seeger,et al.  An optimal and progressive algorithm for skyline queries , 2003, SIGMOD '03.

[31]  Donald Kossmann,et al.  The Skyline operator , 2001, Proceedings 17th International Conference on Data Engineering.

[32]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[33]  Georgia Koutrika,et al.  Constrained optimalities in query personalization , 2005, SIGMOD '05.

[34]  Mihalis Yannakakis,et al.  Edge-Deletion Problems , 1981, SIAM J. Comput..

[35]  Jun Yang,et al.  TupleRank and Implicit Relationship Discovery in Relational Databases , 2003, WAIM.