Ultrafast Phase Comparator for Phase-Locked Loop-Based Optoelectronic Clock Recovery Systems

The authors report on a novel application of a chi(2) nonlinear optical device as an ultrafast phase comparator, an essential element that allows an optoelectronic phase-locked loop to perform clock recovery of ultrahigh-speed optical time-division multiplexed (OTDM) signals. Particular interest is devoted to a quasi-phase-matching adhered-ridge-waveguide periodically poled lithium niobate (PPLN) device, which shows a sufficient high temporal resolution to resolve a 640 Gbits OTDM signal.

[1]  Gregory Raybon,et al.  160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop , 2000 .

[2]  Martin M. Fejer,et al.  Ultrashort-pulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping , 2000 .

[3]  S. Mino,et al.  160-Gb/s optical-time-division multiplexing with PPLN hybrid integrated planar lightwave circuit , 2003, IEEE Photonics Technology Letters.

[4]  S. Kawanishi,et al.  Ultrahigh-speed clock recovery with phase lock loop based on four-wave mixing in a traveling-wave laser diode amplifier , 1996 .

[5]  H. Ito,et al.  Speed limit of all-optical gate switches using cascaded second-order nonlinear effect in quasi-phase-matched LiNbO3 devices , 2002, IEEE Photonics Technology Letters.

[6]  A.E. Willner,et al.  All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide , 2005, Digest of the LEOS Summer Topical Meetings, 2005..

[7]  R. Salem,et al.  Polarization-insensitive optical clock recovery at 80 Gb/s using a silicon photodiode , 2005, IEEE Photonics Technology Letters.

[8]  Alain Blanchard,et al.  Phase-Locked Loops: Application to Coherent Receiver Design , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  Floyd M. Gardner,et al.  Phaselock Techniques: Gardner/Phaselock Techniques , 2005 .

[10]  F. G. Agis,et al.  10-GHz clock recovery using an optoelectronic phase-locked loop based on three-wave mixing in periodically poled lithium niobate , 2006, IEEE Photonics Technology Letters.

[11]  E. Tangdiongga,et al.  Clock recovery and demultiplexing performance of 160-gb/s OTDM field experiments , 2004, IEEE Photonics Technology Letters.

[12]  Myoungsik Cha,et al.  Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO_3 at the communications band. , 2002, Optics letters.

[13]  A. W. Moore,et al.  Phase-locked loops for motor-speed control , 1973, IEEE Spectrum.

[14]  Michael Galili,et al.  320 Gbps to 10 GHz sub-clock recovery using a PPLN-based opto-electronic phase-locked loop. , 2008, Optics express.

[15]  10 GHz clock recovery using an opto-electronic phase-locked loop based on three-wave mixing in periodically-poled lithium niobate , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[16]  T. Taira,et al.  Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate , 2003 .

[17]  E. Tangdiongga,et al.  Clock recovery by a fiber ring laser employing a linear optical amplifier , 2004, IEEE Photonics Technology Letters.

[18]  A.E. Willner,et al.  All-optical signal processing using /spl chi//sup (2)/ nonlinearities in guided-wave devices , 2006, Journal of Lightwave Technology.

[19]  S. Kurimura,et al.  Quasi-phase-matched adhered ridge waveguide in LiNbO3 , 2006 .

[20]  H. Suzuki,et al.  0-dB wavelength conversion using direct-bonded QPM-Zn : LiNbO/sub 3/ ridge waveguide , 2005, IEEE Photonics Technology Letters.

[21]  M. Fejer,et al.  Quasi-phase-matched second harmonic generation: tuning and tolerances , 1992 .

[22]  C. Langrock,et al.  Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation , 2006, IEEE Photonics Technology Letters.

[23]  Carsten Langrock,et al.  Monolithic 160 Gbit/s optical time-division multiplexer. , 2007, Optics letters.

[24]  Garth Nash Phase-Locked Loop Design Fundamentals , 2006 .

[25]  S. Kawanishi,et al.  Ultra-high-speed PLL-type clock recovery circuit based on all-optical gain modulation in traveling-wave laser diode amplifier , 1993 .

[26]  H. de Waardt,et al.  Long-haul DWDM transmission systems employing optical phase conjugation , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  Leif Katsuo Oxenløwe,et al.  640 Gbit/s clock recovery using periodically poled lithium niobate , 2008 .

[28]  Eduward Tangdiongga,et al.  40 GHz clock recovery from 640 Gbit/s OTDM signal using SOA-based phase comparator , 2008 .

[29]  M. Fejer,et al.  Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO 3 , 1995 .

[30]  J. Goldhar,et al.  Subharmonic optical clock recovery from 160 Gb/s using time-dependent loss saturation inside a single electroabsorption modulator , 2003, IEEE Photonics Technology Letters.

[31]  O. Kamatani,et al.  Prescaled timing extraction from 400 Gb/s optical signal using a phase lock loop based on four-wave-mixing in a laser diode amplifier , 1996, IEEE Photonics Technology Letters.

[32]  F. Gomez-Agis,et al.  640-Gbit/s Data Transmission and Clock Recovery Using an Ultrafast Periodically Poled Lithium Niobate Device , 2009, Journal of Lightwave Technology.

[33]  F. Matera,et al.  Field demonstration of in-line all-optical wavelength conversion in a WDM dispersion managed 40-Gbit/s link , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[34]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .