Common Disease Is More Complex Than Implied by the Core Gene Omnigenic Model

[1]  Caroline F. Wright,et al.  De novo mutations in regulatory elements in neurodevelopmental disorders , 2018, Nature.

[2]  Sina A. Gharib,et al.  Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood , 2018, Nature Communications.

[3]  Jakob Grove,et al.  Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection , 2018, Nature Genetics.

[4]  Cook,et al.  Fine-mapping of an expanded set of type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps , 2018, bioRxiv.

[5]  Martin C Frith,et al.  A survey of localized sequence rearrangements in human DNA , 2017, Nucleic acids research.

[6]  Jean-Claude Tardif,et al.  HDL and atherosclerotic cardiovascular disease: genetic insights into complex biology , 2018, Nature Reviews Cardiology.

[7]  K. Brennand,et al.  Mapping regulatory variants in hiPSC models , 2017, Nature Genetics.

[8]  Brent S. Pedersen,et al.  A map of constrained coding regions in the human genome , 2017, Nature Genetics.

[9]  S. Faraone The Omnigenic Model: Implications for Psychiatric Genetics , 2017 .

[10]  Nancy J. Cox Comments on Pritchard Paper , 2017 .

[11]  Yang I Li,et al.  The Omnigenic Model: Response from the Authors , 2017 .

[12]  B. Franke What’s in a Name: the “Omnigenic” Model as a Point of Departure for Polygenic Psychiatric Disorders , 2017 .

[13]  Yufeng Shen,et al.  Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands , 2017, Nature Genetics.

[14]  Enrico Amico,et al.  Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study. , 2017, The Lancet. Neurology.

[15]  Timothy Caulfield,et al.  Genes, cells, and biobanks: Yes, there’s still a consent problem , 2017, PLoS biology.

[16]  Yang I Li,et al.  An Expanded View of Complex Traits: From Polygenic to Omnigenic , 2017, Cell.

[17]  M. Daly,et al.  Regional missense constraint improves variant deleteriousness prediction , 2017, bioRxiv.

[18]  Marius Wernig,et al.  μNeurocircuitry: Establishing in vitro models of neurocircuits with human neurons. , 2017, Technology.

[19]  E. Callaway New concerns raised over value of genome-wide disease studies , 2017, Nature.

[20]  Alireza Mashaghi,et al.  An end-user perspective on Organ-on-a-Chip : Assays and usability aspects , 2017 .

[21]  Christine A. Sedore,et al.  Impact of genetic background and experimental reproducibility on identifying chemical compounds with robust longevity effects , 2017, Nature Communications.

[22]  M. Berger,et al.  Precision oncology: Charting a path forward to broader deployment of genomic profiling , 2017, PLoS medicine.

[23]  N. Baliga,et al.  The State of Systems Genetics in 2017. , 2017, Cell systems.

[24]  Deciphering Developmental Disorders Study,et al.  Prevalence and architecture of de novo mutations in developmental disorders , 2017, Nature.

[25]  Daniel J. Gaffney,et al.  Molecular and functional variation in iPSC-derived sensory neurons , 2017, bioRxiv.

[26]  Marcelo P. Segura-Lepe,et al.  Rare and low-frequency coding variants alter human adult height , 2016, Nature.

[27]  A. Price,et al.  Dissecting the genetics of complex traits using summary association statistics , 2016, Nature Reviews Genetics.

[28]  Loukas Moutsianas,et al.  Exploring the genetic architecture of inflammatory bowel disease , 2016 .

[29]  Jos Joore,et al.  High-throughput compound evaluation on 3D networks of neurons and glia in a microfluidic platform , 2016, Scientific Reports.

[30]  Hyejung Won,et al.  The road to precision psychiatry: translating genetics into disease mechanisms , 2016, Nature Neuroscience.

[31]  Giulio Genovese,et al.  Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia , 2016, Nature Neuroscience.

[32]  Stephen C. J. Parker,et al.  The genetic architecture of type 2 diabetes , 2016, Nature.

[33]  A. Chakravarti,et al.  Revealing rate‐limiting steps in complex disease biology: The crucial importance of studying rare, extreme‐phenotype families , 2016, BioEssays : news and reviews in molecular, cellular and developmental biology.

[34]  The effect of gene interactions on the long-term response to selection , 2016, Proceedings of the National Academy of Sciences.

[35]  M. Keshavan,et al.  Biomarkers in Psychiatry - A Critique , 2016, Annals of Neurosciences.

[36]  Giulio Genovese,et al.  Schizophrenia risk from complex variation of complement component 4 , 2016, Nature.

[37]  Martin Eklund,et al.  Prostate cancer screening in men aged 50-69 years (STHLM3): a prospective population-based diagnostic study. , 2015, The Lancet. Oncology.

[38]  B. Shields,et al.  A Type 1 Diabetes Genetic Risk Score Can Aid Discrimination Between Type 1 and Type 2 Diabetes in Young Adults , 2015, Diabetes Care.

[39]  Genetic differential calculus , 2015, Nature Genetics.

[40]  P. Visscher,et al.  Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index , 2015, Nature Genetics.

[41]  Jane S. Paulsen,et al.  Identification of Genetic Factors that Modify Clinical Onset of Huntington’s Disease , 2015, Cell.

[42]  Daniel H. Geschwind,et al.  Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders , 2015, Nature Reviews Genetics.

[43]  P. Visscher,et al.  Nature Genetics Advance Online Publication , 2022 .

[44]  Mulin Jun Li,et al.  Nature Genetics Advance Online Publication a N a Ly S I S the Support of Human Genetic Evidence for Approved Drug Indications , 2022 .

[45]  W. G. Hill,et al.  Dominance genetic variation contributes little to the missing heritability for human complex traits. , 2015, American journal of human genetics.

[46]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[47]  F. Collins,et al.  A new initiative on precision medicine. , 2015, The New England journal of medicine.

[48]  Naomi R. Wray,et al.  Genetic Studies of Major Depressive Disorder: Why Are There No Genome-wide Association Study Findings and What Can We Do About It? , 2014, Biological Psychiatry.

[49]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[50]  W. G. Hill,et al.  Influence of Gene Interaction on Complex Trait Variation with Multilocus Models , 2014, Genetics.

[51]  Samuel F. Berkovic,et al.  The hidden genetics of epilepsy—a clinically important new paradigm , 2014, Nature Reviews Neurology.

[52]  A. Lusis,et al.  Systems genetics approaches to understand complex traits , 2013, Nature Reviews Genetics.

[53]  M. McGilliard,et al.  Phenotypic responses of chickens to long-term, bidirectional selection for juvenile body weight--historical perspective. , 2013, Poultry science.

[54]  Patrick F. Sullivan,et al.  Genetic architectures of psychiatric disorders: the emerging picture and its implications , 2012, Nature Reviews Genetics.

[55]  Adam Kiezun,et al.  Exome sequencing and the genetic basis of complex traits , 2012, Nature Genetics.

[56]  P. Visscher,et al.  Genetic architecture of body size in mammals , 2012, Genome Biology.

[57]  Joseph K. Pickrell,et al.  A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes , 2012, Science.

[58]  E. Lander,et al.  The mystery of missing heritability: Genetic interactions create phantom heritability , 2012, Proceedings of the National Academy of Sciences.

[59]  M C O'Donovan,et al.  Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia , 2011, Molecular Psychiatry.

[60]  S. Salzberg,et al.  Repetitive DNA and next-generation sequencing: computational challenges and solutions , 2011, Nature Reviews Genetics.

[61]  F. Agakov,et al.  Abundant pleiotropy in human complex diseases and traits. , 2011, American journal of human genetics.

[62]  David M. Simcha,et al.  Tackling the widespread and critical impact of batch effects in high-throughput data , 2010, Nature Reviews Genetics.

[63]  Marylyn D. Ritchie,et al.  PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations , 2010, Bioinform..

[64]  W. G. Hill,et al.  Understanding and using quantitative genetic variation , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[65]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[66]  M. Siegal,et al.  Robustness: mechanisms and consequences. , 2009, Trends in genetics : TIG.

[67]  P. Visscher,et al.  Common polygenic variation contributes to risk of schizophrenia and bipolar disorder , 2009, Nature.

[68]  P. Phillips Epistasis — the essential role of gene interactions in the structure and evolution of genetic systems , 2008, Nature Reviews Genetics.

[69]  David L Stern,et al.  The Loci of Evolution: How Predictable is Genetic Evolution? , 2008, Evolution; international journal of organic evolution.

[70]  M. Slatkin Exchangeable Models of Complex Inherited Diseases , 2008, Genetics.

[71]  W. G. Hill,et al.  Data and Theory Point to Mainly Additive Genetic Variance for Complex Traits , 2008, PLoS genetics.

[72]  Joachim Hermisson,et al.  EVOLUTION OF GENETIC ARCHITECTURE UNDER DIRECTIONAL SELECTION , 2006, Evolution; international journal of organic evolution.

[73]  Stylianos E. Antonarakis,et al.  Mendelian disorders deserve more attention , 2006, Nature Reviews Genetics.

[74]  J. Pritchard,et al.  The allelic architecture of human disease genes: common disease-common variant...or not? , 2002, Human molecular genetics.

[75]  E. Lander,et al.  On the allelic spectrum of human disease. , 2001, Trends in genetics : TIG.

[76]  J. Pritchard Are rare variants responsible for susceptibility to complex diseases? , 2001, American journal of human genetics.

[77]  J. Cheverud Genetics and analysis of quantitative traits , 1999 .

[78]  M. Lynch,et al.  Genetics and Analysis of Quantitative Traits , 1996 .

[79]  H. A. Orr,et al.  The Genetics of Adaptation: A Reassessment , 1992, The American Naturalist.

[80]  M. Kimura,et al.  An introduction to population genetics theory , 1971 .

[81]  J. Shields,et al.  A polygenic theory of schizophrenia , 1967 .

[82]  L. Penrose The genetical background of common diseases. , 1953, Acta genetica et statistica medica.