Primal-dual interior-point algorithm for convex quadratic semi-definite optimization

Abstract In this paper, we present a new primal-dual interior-point algorithm for solving a special case of convex quadratic semi-definite optimization based on a parametric kernel function. The proposed parametric kernel function is used both for determining the search directions and for measuring the distance between the given iterate and the μ -center for the algorithm. These properties enable us to derive the currently best known iteration bounds for the algorithm with large- and small-update methods, namely, O ( n log n log n e ) and O ( n log n e ) , respectively, which reduce the gap between the practical behavior of the algorithm and its theoretical performance results.

[1]  Xiantao Xiao,et al.  A smoothing Newton method for a type of inverse semi-definite quadratic programming problem , 2009 .

[2]  Yin Zhang,et al.  On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..

[3]  Kim-Chuan Toh,et al.  An inexact primal–dual path following algorithm for convex quadratic SDP , 2007, Math. Program..

[4]  Jiming Peng,et al.  Self-regular functions and new search directions for linear and semidefinite optimization , 2002, Math. Program..

[5]  Ya-Xiang Yuan,et al.  A Predictor–Corrector Algorithm for QSDP Combining Dikin-Type and Newton Centering Steps , 2001, Ann. Oper. Res..

[6]  Qinghong Zhang Uniform LP duality for semidefinite and semi-infinite programming , 2008, Central Eur. J. Oper. Res..

[7]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[8]  P. Tseng Search directions and convergence analysis of some infeasibnle path-following methods for the monoton semi-definite lcp ∗ , 1998 .

[9]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[10]  Kees Roos,et al.  A Comparative Study of Kernel Functions for Primal-Dual Interior-Point Algorithms in Linear Optimization , 2004, SIAM J. Optim..

[11]  Kees Roos,et al.  Primal-Dual Interior-Point Algorithms for Semidefinite Optimization Based on a Simple Kernel Function , 2005, J. Math. Model. Algorithms.

[12]  Jean-Philippe Vial,et al.  Theory and algorithms for linear optimization - an interior point approach , 1998, Wiley-Interscience series in discrete mathematics and optimization.

[13]  Kenneth O. Kortanek,et al.  Perfect duality in semi–infinite and semidefinite programming , 2001, Math. Program..

[14]  Defeng Sun,et al.  A Quadratically Convergent Newton Method for Computing the Nearest Correlation Matrix , 2006, SIAM J. Matrix Anal. Appl..

[15]  Shinji Hara,et al.  Interior Point Methods for the Monotone Linear Complementarity Problem in Symmetric Matrices , 1995 .

[16]  M. Todd,et al.  Inexact primal-dual path-following algorithms for a special class of convex quadratic SDP and related problems , 2005 .

[17]  Masakazu Kojima,et al.  Search directions in the SDP and the monotone SDLCP: generalization and inexact computation , 1999, Math. Program..

[18]  Henry Wolkowicz,et al.  Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming , 1999, Comput. Optim. Appl..

[19]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[20]  G. Lesaja,et al.  A Class of Large-Update and Small-Update Primal-Dual Interior-Point Algorithms for Linear Optimization , 2008 .

[21]  Yuan Yaxiang,et al.  A potential reduction algorithm for an extended SDP problem , 2000 .

[22]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[23]  S. J. Li,et al.  Duality for semi-definite and semi-infinite programming , 2003 .

[24]  Yan-Qin Bai,et al.  A new primal-dual path-following interior-point algorithm for semidefinite optimization , 2009 .

[25]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..