PLAPACK Parallel Linear Algebra Package Design Overview

The Parallel Linear Algebra Package (PLAPACK) is a maturing fourth generation linear algebra infrastructure which uses a application-centric view of vector and matrix distribution, Physically Based Matrix Distribution. It also uses an "MPI-like" programming interface that hides distribution and indexing details in opaque objects, provides a natural layering in the library, and provides a straight-forward application interface. We give an overview of the design of PLAPACK.

[1]  Harold Carter Edwards,et al.  A parallel infrastructure for scalable adaptive finite element methods and its application to least squares C-infinity collocation , 1998 .

[2]  Robert A. van de Geijn,et al.  Using PLAPACK - parallel linear algebra package , 1997 .

[3]  Robert A. van de Geijn,et al.  Parallel implementation of BLAS: general techniques for Level 3 BLAS , 1995, Concurr. Pract. Exp..

[4]  Robert A. van de Geijn,et al.  SUMMA: scalable universal matrix multiplication algorithm , 1995, Concurr. Pract. Exp..

[5]  Robert A. van de Geijn,et al.  PLAPACK: Parallel Linear Algebra Package , 1997, PPSC.

[6]  C. H. Bischof,et al.  A parallel implementation of symmetric band reduction using PLAPACK , 1996 .

[7]  Jack Dongarra,et al.  MPI: The Complete Reference , 1996 .

[8]  Harold Carter Edwards MMPI: Asynchronous Message Management for the Message-Passing Interface , 1996 .

[9]  R. V. D. Geijn,et al.  Parallel Matrix Distributions: Have we been doing it all wrong? , 1995 .

[10]  Robert A. van de Geijn,et al.  Fast Collective Communication Libraries, Please , 1995 .

[11]  Anthony Skjellum,et al.  Dense and iterative concurrent linear algebra in the Multicomputers Toolbox , 1993, Proceedings of Scalable Parallel Libraries Conference.

[12]  Jack Dongarra,et al.  ScaLAPACK: a scalable linear algebra library for distributed memory concurrent computers , 1992, [Proceedings 1992] The Fourth Symposium on the Frontiers of Massively Parallel Computation.

[13]  Jack J. Dongarra,et al.  A set of level 3 basic linear algebra subprograms , 1990, TOMS.