Single-cell high-throughput screening to identify enantioselective hydrolytic enzymes.

[1]  R. Verger,et al.  Lipases: Interfacial Enzymes with Attractive Applications. , 1998, Angewandte Chemie.

[2]  Frances H Arnold,et al.  Why high-error-rate random mutagenesis libraries are enriched in functional and improved proteins. , 2004, Journal of molecular biology.

[3]  M. Reetz,et al.  Microbial lipases form versatile tools for biotechnology. , 1998, Trends in biotechnology.

[4]  John M Woodley,et al.  Directed evolution of biocatalytic processes. , 2005, Biomolecular engineering.

[5]  Rohit Sharma,et al.  Directed Evolution: An Approach to Engineer Enzymes , 2006, Critical reviews in biotechnology.

[6]  Manfred T Reetz,et al.  Controlling the enantioselectivity of enzymes by directed evolution: practical and theoretical ramifications. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Tommassen,et al.  A Novel Lipolytic Enzyme Located in the Outer Membrane of Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[8]  M. T. Reetz,et al.  Erzeugung enantioselektiver Biokatalysatoren für die Organische Chemie durch In‐vitro‐Evolution , 1997 .

[9]  I. Wilson,et al.  Directed evolution of N-acetylneuraminic acid aldolase to catalyze enantiomeric aldol reactions. , 2003, Bioorganic & medicinal chemistry.

[10]  Dan S. Tawfik,et al.  High-throughput screening of enzyme libraries: thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments. , 2005, Chemistry & biology.

[11]  Gavin J. Williams,et al.  Modifying the stereochemistry of an enzyme-catalyzed reaction by directed evolution , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Dick B Janssen,et al.  Directed evolution of epoxide hydrolase from A. radiobacter toward higher enantioselectivity by error-prone PCR and DNA shuffling. , 2004, Chemistry & biology.

[13]  R. Schmid,et al.  Lipasen: Grenzflächen‐Enzyme mit attraktiven Anwendungen , 1998 .

[14]  Jean-Louis Reymond,et al.  Enzyme assays for high-throughput screening. , 2004, Current opinion in biotechnology.

[15]  H. Kolmar,et al.  Functional Cell‐Surface Display of a Lipase‐Specific Chaperone , 2007, Chembiochem : a European journal of chemical biology.

[16]  M. T. Reetz,et al.  Gerichtete Evolution eines enantioselektiven Enzyms durch kombinatorische multiple Kassetten‐Mutagenese , 2001 .

[17]  Donald Hilvert,et al.  Investigating and Engineering Enzymes by Genetic Selection. , 2001, Angewandte Chemie.

[18]  M. Burk,et al.  Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). , 2003, Journal of the American Chemical Society.

[19]  K. A. Powell,et al.  Gerichtete Evolution und Biokatalyse , 2001 .

[20]  Dan S. Tawfik,et al.  In vitro compartmentalization by double emulsions: sorting and gene enrichment by fluorescence activated cell sorting. , 2004, Analytical biochemistry.

[21]  U. Bornscheuer,et al.  Hydrolases in Organic Synthesis: Regio- and Stereoselective Biotransformations , 1999 .

[22]  K. Johnsson,et al.  The laboratory in a droplet. , 2005, Chemistry & biology.

[23]  Karl-Erich Jaeger,et al.  A generic system for the Escherichia coli cell‐surface display of lipolytic enzymes , 2005, FEBS letters.

[24]  Donald Hilvert,et al.  Genetische Selektion – eine Strategie zur Untersuchung und Herstellung von Enzymen , 2001 .

[25]  K. Gruber,et al.  Inverting enantioselectivity of Burkholderia gladioli esterase EstB by directed and designed evolution. , 2007, Journal of biotechnology.

[26]  Yvonne Genzel,et al.  Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution. , 2004, Organic letters.

[27]  Karl-Erich Jaeger,et al.  Ultrahigh‐Throughput Screening to Identify E. coli Cells Expressing Functionally Active Enzymes on their Surface , 2007, Chembiochem : a European journal of chemical biology.

[28]  Huimin Zhao,et al.  Recent advances in biocatalysis by directed enzyme evolution. , 2006, Combinatorial chemistry & high throughput screening.

[29]  A. Griffiths,et al.  High-throughput screening of enzyme libraries: in vitro evolution of a beta-galactosidase by fluorescence-activated sorting of double emulsions. , 2005, Chemistry & biology.

[30]  Manfred T. Reetz,et al.  Directed Evolution of an Enantioselective Enzyme through Combinatorial Multiple-Cassette Mutagenesis. , 2001, Angewandte Chemie.

[31]  B. Tidor,et al.  Selection of horseradish peroxidase variants with enhanced enantioselectivity by yeast surface display. , 2007, Chemistry & biology.

[32]  Susanne Wilhelm,et al.  Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts. , 2004, Current opinion in biotechnology.

[33]  Keith A. Powell,et al.  Directed Evolution and Biocatalysis. , 2001, Angewandte Chemie.

[34]  Nicholas J Turner,et al.  Directed evolution of an amine oxidase possessing both broad substrate specificity and high enantioselectivity. , 2003, Angewandte Chemie.

[35]  Manfred T. Reetz,et al.  Creation of Enantioselective Biocatalysts for Organic Chemistry by In Vitro Evolution , 1997 .

[36]  M. Reetz,et al.  Directed evolution of cyclohexanone monooxygenases: enantioselective biocatalysts for the oxidation of prochiral thioethers. , 2004, Angewandte Chemie.

[37]  Hideo Nakano,et al.  Inverting enantioselectivity of Burkholderia cepacia KWI-56 lipase by combinatorial mutation and high-throughput screening using single-molecule PCR and in vitro expression. , 2003, Journal of molecular biology.

[38]  Frances H. Arnold,et al.  Directed enzyme evolution : screening and selection methods , 2003 .

[39]  Frances H. Arnold,et al.  Inverting enantioselectivity by directed evolution of hydantoinase for improved production of l-methionine , 2000, Nature Biotechnology.

[40]  Manfred T Reetz,et al.  Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes , 2007, Nature Protocols.