The 183-WSL fast rain rate retrieval algorithm: Part I: Retrieval design

Abstract The Water vapour Strong Lines at 183 GHz (183-WSL) fast retrieval method retrieves rain rates and classifies precipitation types for applications in nowcasting and weather monitoring. The retrieval scheme consists of two fast algorithms, over land and over ocean, that use the water vapour absorption lines at 183.31 GHz corresponding to the channels 3 (183.31 ± 1 GHz), 4 (183.31 ± 3 GHz) and 5 (183.31 ± 7 GHz) of the Advanced Microwave Sounding Unit module B (AMSU-B) and of the Microwave Humidity Sounder (MHS) flying on NOAA-15-18 and Metop-A satellite series, respectively. The method retrieves rain rates by exploiting the extinction of radiation due to rain drops following four subsequent steps. After ingesting the satellite data stream, the window channels at 89 and 150 GHz are used to compute scattering-based thresholds and the 183-WSLW module for rainfall area discrimination and precipitation type classification as stratiform or convective on the basis of the thresholds calculated for land/mixed and sea surfaces. The thresholds are based on the brightness temperature difference Δ win  = T B89  − T B150 and are different over land (L) and over sea (S): cloud droplets and water vapour (Δ win win win win win  > 10 K L and S). The thresholds, initially empirically derived from observations, are corroborated by the simulations of the RTTOV radiative transfer model applied to 20000 ECMWF atmospheric profiles at midlatitudes and the use of data from the Nimrod radar network. A snow cover mask and a digital elevation model are used to eliminate false rain area attribution, especially over elevated terrain. A probability of detection logistic function is also applied in the transition region from no-rain to rain adjacent to the clouds to ensure continuity of the rainfall field. Finally, the last step is dedicated to the rain rate retrieval with the modules 183-WSLS (stratiform) and 183WSLC (convective), and the module 183-WSL for total rainfall intensity derivation. A comparison with rainfall retrievals from the Goddard Profiling (GPROF) TRMM 2A12 algorithm is done with good results on a stratiform and hurricane case studies. A comparison is also conducted with the MSG-based Precipitation Index (PI) and the Scattering Index (SI) for a convective-stratiform event showing good agreement with the 183-WSLC retrieval. A complete validation of the product is the subject of Part II of the paper.

[1]  Clemens Simmer,et al.  Remote sensing of cloud liquid water , 1994 .

[2]  Nobuhiro Takahashi,et al.  Rain/No-Rain Classification Methods for Microwave Radiometer Observations over Land Using Statistical Information for Brightness Temperatures under No-Rain Conditions , 2005 .

[3]  W. Olson Physical retrieval of rainfall rates over the ocean by multispectral microwave radiometry: Application to tropical cyclones , 1989 .

[4]  Eric A. Smith,et al.  Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. I: Brightness-temperature properties of a time-dependent cloud-radiation model , 1992 .

[5]  Catherine Prigent,et al.  Aircraft measurements of water vapour continuum absorption at millimetre wavelengths , 1994 .

[6]  C. Neale,et al.  Land-surface-type classification using microwave brightness temperatures from the Special Sensor Mic , 1990 .

[7]  Fuzhong Weng,et al.  Retrieval of Ice Cloud Parameters Using the Advanced Microwave Sounding Unit , 2002 .

[8]  Ramesh K. Kakar,et al.  Retrieval of Clear Sky Moisture Profiles using the 183 GHz Water Vapor Line , 1983 .

[9]  Chris Kidd,et al.  On rainfall retrieval using polarization-corrected temperatures , 1998 .

[10]  J. Curry,et al.  Retrieval of precipitation from satellite microwave measurement using both emission and scattering , 1992 .

[11]  Philip W. Rosenkranz,et al.  Retrieval of temperature and moisture profiles from AMSU-A and AMSU-B measurements , 2001, IEEE Trans. Geosci. Remote. Sens..

[12]  L. Giglio,et al.  A passive microwave technique for estimating rainfall and vertical structure information from space. Part 2: Applications to SSM/I data , 1994 .

[13]  Peter Bauer,et al.  475 Passive Microwave Radiometer Channel Selection Based on Cloud and Precipitation Information Content Estimation , 2005 .

[14]  David H. Staelin,et al.  Comparison of AMSU Millimeter-Wave Satellite Observations, MM5/TBSCAT Predicted Radiances, and Electromagnetic Models for Hydrometeors , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[15]  C. Prabhakara,et al.  A microwave radiometer rain retrieval method applicable to land areas , 1999 .

[16]  Frederick Wey-Min Chen,et al.  Global estimation of precipitation using opaque microwave bands , 2004 .

[17]  Takuji Kubota,et al.  The GSMaP Precipitation Retrieval Algorithm for Microwave Sounders—Part I: Over-Ocean Algorithm , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Eric A. Smith,et al.  Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. II: Emission-source and generalized weighting-function properties of a time-dependent cloud-radiation model , 1993 .

[19]  J. R. Wang,et al.  Retrieval of total precipitable water using radiometric measurements near 92 and 183 GHz , 1989 .

[20]  E. Todini,et al.  Detecting Precipitating Clouds over Snow and Ice Using a Multiple Sensors Approach , 2009 .

[21]  Ralph Ferraro,et al.  Satellite Precipitation Measurements for Water Resource Monitoring 1 , 2009 .

[22]  Ronald G. Isaacs,et al.  Millimeter wave moisture sounding: The effect of clouds , 1987 .

[23]  Graeme L. Stephens,et al.  Microweve Radiative Transfer through Clouds Composed of Realistically Shaped Ice Crystals. Part II. Remote Sensing of Ice Clouds. , 1995 .

[24]  P. Bauer Over-Ocean Rainfall Retrieval from Multisensor Data of the Tropical Rainfall Measuring Mission. Part I: Design and Evaluation of Inversion Databases , 2001 .

[25]  Kazumasa Aonashi,et al.  An over-ocean precipitation retrieval using SSM/I multichannel brightness temperatures , 1996 .

[26]  T. Kubota,et al.  GSMaP Passive Microwave Precipitation Retrieval Algorithm : Algorithm Description and Validation(2. Global Satellite Mapping of Precipitation (GSMaP) Project, Precipitation Measurements from Space) , 2009 .

[27]  C. Kummerow,et al.  Radiative properties of deformed hydrometeors for commonly used passive microwave frequencies , 1988 .

[28]  Thomas T. Wilheit,et al.  An Algorithm for Retrieving Water Vapor Profiles in Clear and Cloudy Atmospheres from 183 GHz Radiometric Measurements: Simulation Studies , 1990 .

[29]  Thomas T. Wilheit,et al.  A satellite technique for quantitatively mapping rainfall rates over the oceans , 1977 .

[30]  Takuji Kubota,et al.  Improvement of Rain/No-Rain Classification Methods for Microwave Radiometer Observations over the Ocean Using a 37 GHz Emission Signature , 2009 .

[31]  N. Grody Classification of snow cover and precipitation using the special sensor microwave imager , 1991 .

[32]  Keiji Imaoka,et al.  The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies , 2003, IEEE Trans. Geosci. Remote. Sens..

[33]  Ralph Ferraro,et al.  Next generation of NOAA/NESDIS TMI, SSM/I, and AMSR‐E microwave land rainfall algorithms , 2003 .

[34]  Grant W. Petty,et al.  Physical and Microwave Radiative Properties of Precipitating Clouds. Part II: A Parametric 1D Rain-Cloud Model for Use in Microwave Radiative Transfer Simulations , 2001 .

[35]  E. Anagnostou,et al.  Precipitation: Measurement, remote sensing, climatology and modeling , 2009 .

[36]  Xiangqian Wu,et al.  Effects of precipitation and cloud ice on brightness temperatures in AMSU moisture channels , 1997, IEEE Trans. Geosci. Remote. Sens..

[37]  H. Michael Goodman,et al.  Precipitation retrieval over land and ocean with the SSM/I - Identification and characteristics of the scattering signal , 1989 .

[38]  David H. Staelin,et al.  AIRS/AMSU/HSB precipitation estimates , 2003, IEEE Trans. Geosci. Remote. Sens..

[39]  C. Prabhakara,et al.  A TRMM Microwave Radiometer Rain Rate Estimation Method with Convective and Stratiform Discrimination , 2000 .

[40]  Ralph Ferraro,et al.  Utilization of the AMSU high frequency measurements for improved coastal rain retrievals , 2007 .

[41]  Ralph Ferraro,et al.  The Development of SSM/I Rain-Rate Retrieval Algorithms Using Ground-Based Radar Measurements , 1995 .

[42]  Jean-Noël Thépaut,et al.  An improved general fast radiative transfer model for the assimilation of radiance observations , 2004 .

[43]  J. Schmetz,et al.  AN INTRODUCTION TO METEOSAT SECOND GENERATION (MSG) , 2002 .

[44]  Misako Kachi,et al.  Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production and Validation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[45]  David H. Staelin,et al.  Global Millimeter-Wave Precipitation Retrievals Trained With a Cloud-Resolving Numerical Weather Prediction Model, Part I: Retrieval Design , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Peter Bauer,et al.  Over-Ocean Rainfall Retrieval from Multisensor Data of the Tropical Rainfall Measuring Mission. Part II: Algorithm Implementation , 2001 .

[47]  Christian D. Kummerow,et al.  A Passive Microwave Technique for Estimating Rainfall and Vertical Structure Information from Space. Part I: Algorithm Description , 1994 .

[48]  Christian Kummerow,et al.  A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors , 1996, IEEE Trans. Geosci. Remote. Sens..

[49]  T. Wilheit,et al.  Retrieval Of Water Vapor Profiles From Microwave Radiometric Measurements At 183 and 92 GHz , 1988, International Geoscience and Remote Sensing Symposium, 'Remote Sensing: Moving Toward the 21st Century'..

[50]  C. Kummerow,et al.  The Tropical Rainfall Measuring Mission (TRMM) Sensor Package , 1998 .

[51]  David H. Staelin,et al.  NPOESS aircraft sounder testbed-microwave: observations of clouds and precipitation at 54, 118, 183, and 425 GHz , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Peter Bauer,et al.  A review of satellite meteorology and climatology at the start of the twenty-first century , 2009 .

[53]  F. Wentz A well‐calibrated ocean algorithm for special sensor microwave / imager , 1997 .

[54]  Ralf Bennartz,et al.  Precipitation analysis using the Advanced Microwave Sounding Unit in support of nowcasting applications , 2002 .

[55]  Fuzhong Weng,et al.  Advanced microwave sounding unit cloud and precipitation algorithms , 2003 .

[56]  David H. Staelin,et al.  Remote Sensing of Atmospheric Water Vapor and Liquid Water with the Nimbus 5 Microwave Spectrometer , 1976 .

[57]  J. Hilbe Logistic Regression Models , 2009 .

[58]  J. Weinman,et al.  Determination of Rainfall Distributions from Microwave Radiation Measured by the Nimbus 6 ESMR , 1977 .

[59]  R. Kakar,et al.  Estimation of Atmospheric Moisture Content from Microwave Radiometric Measurements during CCOPE , 1985 .

[60]  Nobuhiro Takahashi,et al.  Advanced Rain/No-Rain Classification Methods for Microwave Radiometer Observations over Land , 2008 .

[61]  M. Deeter,et al.  AMSU-B Observations of Mixed-Phase Clouds over Land , 2005 .

[62]  COMPARISONS OF RTTOVSCATT WITH OBSERVATIONS AND ARTS AT AMSU FREQUENCIES , 2005 .

[63]  Grant W. Petty,et al.  Physical retrievals of over-ocean rain rate from multichannel microwave imagery. Part I: Theoretical characteristics of normalized polarization and scattering indices , 1994 .

[64]  J. Marshall,et al.  THE DISTRIBUTION OF RAINDROPS WITH SIZE , 1948 .

[65]  Grant W. Petty,et al.  The Sensitivity of Microwave Remote Sensing Observations of Precipitation to Ice Particle Size Distributions , 2001 .

[66]  Tim J. Hewison,et al.  Radiometric characterization of AMSU-B , 1995 .

[67]  Graeme L. Stephens,et al.  Microwave radiative transfer through clouds composed of realistically shaped ice crystals , 1995 .

[68]  Itamar M. Lensky,et al.  Satellite-Based Insights into Precipitation Formation Processes in Continental and Maritime Convective Clouds , 1998 .

[69]  David H. Staelin,et al.  Global Millimeter-Wave Precipitation Retrievals Trained With A Cloud-Resolving Numerical Weather-Prediction Model, Part II: Performance Evaluation , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[70]  Ralph Ferraro,et al.  Special sensor microwave imager derived global rainfall estimates for climatological applications , 1997 .

[71]  J. Weinman,et al.  Microwave radiances from precipitating clouds containing aspherical ice, combined phase, and liquid hydrometeors , 1984 .

[72]  J. Mahfouf,et al.  Simulation of Satellite Passive Microwave Observations in Rainy Atmospheres at Meteorological Service of Canada , 2006 .

[73]  E. Barrett,et al.  The use of satellite data in rainfall monitoring , 1981 .

[74]  G. Petty Physical retrievals of over-ocean rain rate from multichannel microwave imagery. Part II: Algorithm implementation , 1994 .

[75]  F. Joseph Turk,et al.  Measuring Precipitation from Space: EURAINSAT and the Future , 2007 .

[76]  Bradley M. Muller,et al.  Simulations of the Effects of Water Vapor, Cloud Liquid Water, and Ice on AMSU Moisture Channel Brightness Temperatures , 1994 .

[78]  Dong-Bin Shin,et al.  The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors , 2001 .

[79]  S. Christopher,et al.  Effect of cold clouds on satellite measurements near 183 GHz , 2002 .

[80]  V. Levizzani,et al.  Rain retrieval using the 183 GHz absorption lines , 2008, 2008 Microwave Radiometry and Remote Sensing of the Environment.

[81]  Paul Racette,et al.  An Airborne Millimeter-Wave Imaging Radiometer for Cloud, Precipitation, and Atmospheric Water Vapor Studies , 1996 .

[82]  Robert F. Adler,et al.  A Satellite Infrared Technique to Estimate Tropical Convective and Stratiform Rainfall , 1988 .

[83]  G. Huffman,et al.  A Screening Methodology for Passive Microwave Precipitation Retrieval Algorithms , 1998 .

[84]  Graeme L. Stephens,et al.  A Bayesian approach to microwave precipitation profile retrieval , 1995 .

[85]  Stephen J. English,et al.  Airborne radiometric observations of cloud liquid‐water emission at 89 and 157 GHz: Application to retrieval of liquid‐water path , 1995 .

[86]  Gerald W. Felde,et al.  Retrieval of 91 and 150 GHz Earth surface emissivities , 1995 .

[87]  Albin J. Gasiewski,et al.  Influence of microphysical cloud parameterizations on microwave brightness temperatures , 2002, IEEE Trans. Geosci. Remote. Sens..

[88]  T. R. Sreerekha,et al.  A concept for a satellite mission to measure cloud ice water path, ice particle size, and cloud altitude , 2007 .

[89]  Fuzhong Weng,et al.  NOAA operational hydrological products derived from the advanced microwave sounding unit , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[90]  P. Bauer,et al.  Hydrometeor Retrieval Accuracy Using Microwave Window and Sounding Channel Observations , 2005 .

[91]  Nizy Mathew,et al.  Retrieval of Emissivity and Temperature Profile in Polar Regions , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[92]  Ralf Bennartz,et al.  Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles , 2003 .

[93]  Claude N. Williams,et al.  Using the Special Sensor Microwave/Imager to Monitor Land Surface Temperatures, Wetness, and Snow Cover , 1998 .

[94]  Jungang Miao,et al.  Sensitivity of microwave brightness temperatures to hydrometeors in a tropical deep convective cloud system at 89–190 GHz , 2005 .

[95]  Christian D. Kummerow,et al.  On the accuracy of the Eddington approximation for radiative transfer in the microwave frequencies , 1993 .

[96]  Fuzhong Weng,et al.  Precipitation characteristics over land from the NOAA‐15 AMSU sensor , 2000 .

[97]  David H. Staelin,et al.  Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite , 2000, IEEE Trans. Geosci. Remote. Sens..

[98]  David H. Staelin,et al.  Millimeter-Wave Precipitation Retrievals and Observed-versus-Simulated Radiance Distributions: Sensitivity to Assumptions , 2007 .