A NEW APPROACH TO SOLVE MULTIPLE OBJECTIVE PROGRAMMING PROBLEMS

Multiple Objective Programming (MOP) problems have become famous among many researchers due to more practical and realistic implementations. There have been a lot of methods proposed especially during the past four decades. In this paper, we develop a new algorithm based on a new approach to solve MOP problems by starting from a utopian point (which is usually infeasible) and moving towards the feasible region via stepwise movements and a plain continuous interaction with Decision Maker (DM). We consider the case where all objective functions and constraints are linear. The implementation of the proposed algorithm is demonstrated with two numerical examples.

[1]  Wojtek Michalowski,et al.  Searching for psychologically stable solutions of multiple criteria decision problems , 1999, Eur. J. Oper. Res..

[2]  A. Pearman Multiple Criteria Decision Making in Industry , 1989 .

[3]  H. G. Daellenbach,et al.  A comparative evaluation of interactive solution methods for multiple objective decision models , 1987 .

[4]  Lori S. Franz,et al.  A simplified interactive multiple objective linear programming procedure , 1985, Comput. Oper. Res..

[5]  Masaaki Ida,et al.  Efficient solution generation for multiple objective linear programming based on extreme ray generation method , 2005, Eur. J. Oper. Res..

[6]  R. Benayoun,et al.  Linear programming with multiple objective functions: Step method (stem) , 1971, Math. Program..

[7]  S. Zionts,et al.  An Interactive Multiple Objective Linear Programming Method for a Class of Underlying Nonlinear Utility Functions , 1983 .

[8]  Jian Chen,et al.  An interactive neural network-based approach for solving multiple criteria decision-making problems , 2003, Decis. Support Syst..

[9]  John J. Bernardo,et al.  A comparison of interactive multiple-objective decision making procedures , 1987, Comput. Oper. Res..

[10]  Stanley Zionts,et al.  Aspiration-based search algorithm (ABSALG) for multiple objective linear programming problems: theory and comparative tests , 1997 .

[11]  C. Hwang Multiple Objective Decision Making - Methods and Applications: A State-of-the-Art Survey , 1979 .

[12]  Gary R. Reeves,et al.  Some experiments in Tchebycheff-based approaches for interactive multiple objective decision making , 1999, Comput. Oper. Res..

[13]  Ralph E. Steuer,et al.  A combined Tchebycheff/aspiration criterion vector interactive multiobjective programming procedure , 1993 .

[14]  BenayounR.,et al.  Linear programming with multiple objective functions , 1971 .

[15]  Carsten Homburg,et al.  Hierarchical multi-objective decision making , 1998, Eur. J. Oper. Res..

[16]  C. Hwang,et al.  Fuzzy Multiple Objective Decision Making: Methods And Applications , 1996 .

[17]  James P. Ignizio,et al.  Goal Programming , 2002, Encyclopedia of Information Systems.

[18]  Marc Roubens,et al.  Multiple criteria decision making , 1994 .

[19]  Yasemin Aksoy,et al.  Comparative studies in interactive multiple objective mathematical programming , 1996 .

[20]  David L. Olson,et al.  A comparative multiobjective programming study , 1988 .

[21]  Alexander Schrijver,et al.  Handbook of Critical Issues in Goal Programming , 1992 .

[22]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[23]  Arthur M. Geoffrion,et al.  An Interactive Approach for Multi-Criterion Optimization, with an Application to the Operation of an Academic Department , 1972 .

[24]  Minghe Sun,et al.  Interactive multiple objective programming using Tchebycheff programs and artificial neural networks , 2000, Comput. Oper. Res..

[25]  João C. N. Clímaco,et al.  A review of interactive methods for multiobjective integer and mixed-integer programming , 2007, Eur. J. Oper. Res..

[26]  H. Pastijn Handbook of critical issues in goal programming: Carlos Romero Pergamon Press, Oxford, 1990, xi + 124 pages, £25.00, ISBN 008 0406610 , 1992 .

[27]  Zvi Drezner,et al.  Allocation of demand when cost is demand-dependent , 1999 .

[28]  Behnam Malakooti,et al.  Extremist vs. centrist decision behavior: quasi-convex utility functions for interactive multi-objective linear programming problems , 2002, Comput. Oper. Res..

[29]  Jaehee Kim,et al.  A CHIM-based interactive Tchebycheff procedure for multiple objective decision making , 2006, Comput. Oper. Res..

[30]  Carlos Henggeler Antunes,et al.  A visual interactive tolerance approach to sensitivity analysis in MOLP , 2002, Eur. J. Oper. Res..

[31]  Minghe Sun,et al.  Some issues in measuring and reporting solution quality of interactive multiple objective programming procedures , 2005, Eur. J. Oper. Res..

[32]  Lorraine R. Gardiner,et al.  Unified interactive multiple objective programming , 1994 .

[33]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.