Recent Progress in Understanding Ion Storage in Self‐Organized Anodic TiO 2 Nanotubes

[1]  Q. Fu,et al.  Electrochemical and structural investigations of different polymorphs of TiO2 in magnesium and hybrid lithium/magnesium batteries , 2018, Electrochimica Acta.

[2]  M. Morcrette,et al.  All electrochemical process for synthesis of Si coating on TiO2 nanotubes as durable negative electrode material for lithium ion batteries , 2018, Journal of Power Sources.

[3]  P. Tartaj,et al.  TiO2 Nanostructures as Anode Materials for Li/Na-Ion Batteries. , 2018, Chemical record.

[4]  S. Das,et al.  An approach to improve the Al3+ ion intercalation in anatase TiO2 nanoparticle for aqueous aluminum-ion battery , 2018, Ionics.

[5]  J. Kunze‐Liebhäuser,et al.  Nonequilibrium Phase Transitions in Amorphous and Anatase TiO2 Nanotubes , 2018 .

[6]  P. Knauth,et al.  Niobium Alloying of Self‐Organized TiO2 Nanotubes as an Anode for Lithium‐Ion Microbatteries , 2018 .

[7]  M. Shaijumon,et al.  Ti3+ Induced Brown TiO2 Nanotubes for High Performance Sodium-Ion Hybrid Capacitors , 2018 .

[8]  L. Mai,et al.  Achieving rapid Li-ion insertion kinetics in TiO2 mesoporous nanotube arrays for bifunctional high-rate energy storage smart windows. , 2018, Nanoscale.

[9]  L. Giebeler,et al.  Current Advances in TiO2-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries , 2018 .

[10]  Yifei Yuan,et al.  Boosting Sodium Storage in TiO2 Nanotube Arrays through Surface Phosphorylation , 2018, Advanced materials.

[11]  A. I. Mardare,et al.  Optimized Design Principles for Silicon‐Coated Nanostructured Electrode Materials and their Application in High‐Capacity Lithium‐Ion Batteries , 2017 .

[12]  S. Das,et al.  Anatase TiO2 as an Anode Material for Rechargeable Aqueous Aluminum-Ion Batteries: Remarkable Graphene Induced Aluminum Ion Storage Phenomenon , 2017 .

[13]  J. Kunze‐Liebhäuser,et al.  The role of surface films during lithiation of amorphous and anatase TiO 2 nanotubes , 2017 .

[14]  Zachary D. Hood,et al.  In situ TEM observation of the electrochemical lithiation of N-doped anatase TiO2 nanotubes as anodes for lithium-ion batteries , 2017 .

[15]  T. Götsch,et al.  Preferentially Oriented TiO2 Nanotubes as Anode Material for Li-Ion Batteries: Insight into Li-Ion Storage and Lithiation Kinetics. , 2017, ACS applied materials & interfaces.

[16]  M. Salanne,et al.  Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. , 2017, Nature materials.

[17]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[18]  F. Bella,et al.  Unveiling the controversial mechanism of reversible Na storage in TiO2 nanotube arrays: Amorphous versus anatase TiO2 , 2017, Nano Research.

[19]  Qian Sun,et al.  Tracking the Effect of Sodium Insertion/Extraction in Amorphous and Anatase TiO2 Nanotubes , 2017 .

[20]  Binlin Guo Double-layer Si/TiO2NTAs as High Performance Anode for Li- ion Batteries , 2017 .

[21]  S. Mahapatra,et al.  Aluminium-ion batteries: developments and challenges , 2017 .

[22]  J. Kunze‐Liebhäuser,et al.  Tracking areal lithium densities from neutron activation - quantitative Li determination in self-organized TiO2 nanotube anode materials for Li-ion batteries. , 2017, Physical chemistry chemical physics : PCCP.

[23]  M. Kazazi,et al.  High surface area TiO2 nanospheres as a high-rate anode material for aqueous aluminium-ion batteries , 2017 .

[24]  M. Wilkening,et al.  An Electrolyte for Reversible Cycling of Sodium Metal and Intercalation Compounds. , 2017, ChemSusChem.

[25]  Xiaodong Chen,et al.  Nanostructured TiO2‐Based Anode Materials for High‐Performance Rechargeable Lithium‐Ion Batteries , 2016 .

[26]  Jiangfeng Qian,et al.  Graphene-supported TiO2 nanospheres as a high-capacity and long-cycle life anode for sodium ion batteries , 2016 .

[27]  Xiaolin Xie,et al.  Anatase/rutile titania anchored carbon nanotube porous nanocomposites as superior anodes for lithium ion batteries , 2016 .

[28]  Yuekun Lai,et al.  A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications , 2016 .

[29]  Minghao Zhang,et al.  Investigation of Anatase-TiO2 As an Efficient Electrode Material for Magnesium-Ion Batteries , 2016 .

[30]  Jiulin Wang,et al.  A High-Performance Rechargeable Mg(2+)/Li(+) Hybrid Battery Using One-Dimensional Mesoporous TiO2(B) Nanoflakes as the Cathode. , 2016, ACS applied materials & interfaces.

[31]  Yan Yu,et al.  Self‐Supported Nanotube Arrays of Sulfur‐Doped TiO2 Enabling Ultrastable and Robust Sodium Storage , 2016, Advanced materials.

[32]  M. Wilkening,et al.  Long-Cycle-Life Na-Ion Anodes Based on Amorphous Titania Nanotubes--Interfaces and Diffusion. , 2015, ACS applied materials & interfaces.

[33]  Peter Lamp,et al.  Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights. , 2015, The journal of physical chemistry letters.

[34]  Silvia Leonardi,et al.  Oxygen deficient, carbon coated self-organized TiO2 nanotubes as anode material for Li-ion intercalation , 2015 .

[35]  R. Yazami,et al.  TiO2 polymorphs in ‘rocking-chair’ Li-ion batteries , 2015 .

[36]  Kun Xu,et al.  Research on the Electrochemical Performance of Rutile and Anatase Composite TiO2 Nanotube Arrays in Lithium-Ion Batteries. , 2015, Journal of nanoscience and nanotechnology.

[37]  Xi Chen,et al.  Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals , 2015, Nature Communications.

[38]  Yong Yang,et al.  Fabrication of different crystallographically oriented TiO2 nanotube arrays used in dye-sensitized solar cells , 2015 .

[39]  R. Gilles,et al.  GISAXS and TOF‐GISANS studies on surface and depth morphology of self‐organized TiO2 nanotube arrays: model anode material in Li‐ion batteries , 2015 .

[40]  S. Nappini,et al.  In‐Situ Carbon Doping of TiO2 Nanotubes Via Anodization in Graphene Oxide Quantum Dot Containing Electrolyte and Carburization to TiOxCy Nanotubes , 2015 .

[41]  Leone Spiccia,et al.  Dominating Energy Losses in NiO p‐Type Dye‐Sensitized Solar Cells , 2015 .

[42]  Jiulin Wang,et al.  A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. , 2015, Chemical communications.

[43]  J. Bisquert,et al.  Facile kinetics of Li-ion intake causes superior rate capability in multiwalled carbon nanotube@TiO2 nanocomposite battery anodes , 2014 .

[44]  Jianning Ding,et al.  Synthesis of nanoparticles-deposited double-walled TiO₂-B nanotubes with enhanced performance for lithium-ion batteries. , 2014, ACS applied materials & interfaces.

[45]  A. Bund,et al.  Electrochemical lithiation of Si modified TiO2 nanotube arrays, investigated in ionic liquid electrolyte , 2014 .

[46]  N. A. Kyeremateng Self‐Organised TiO2 Nanotubes for 2D or 3D Li‐Ion Microbatteries , 2014 .

[47]  T. Bein,et al.  Three-dimensional titanium dioxide nanomaterials. , 2014, Chemical reviews.

[48]  P. Schmuki,et al.  One-dimensional titanium dioxide nanomaterials: nanotubes. , 2014, Chemical reviews.

[49]  Wen Zhao,et al.  A facile way to fabricate graphene sheets on TiO2 nanotube arrays for dye-sensitized solar cell applications , 2014, Journal of Materials Science.

[50]  Keumnam Cho,et al.  A facile approach for carburization of anodically grown titania nanotubes: towards metallization of nanotubes , 2014 .

[51]  J. Kunze‐Liebhäuser,et al.  Silicon on conductive self-organized TiO2 nanotubes – A high capacity anode material for Li-ion batteries , 2014 .

[52]  Yadong Yin,et al.  Composite titanium dioxide nanomaterials. , 2014, Chemical reviews.

[53]  Francesco De Angelis,et al.  Review on recent progress of nanostructured anode materials for Li-ion batteries , 2014 .

[54]  Minghong Wu,et al.  C-axis preferentially oriented and fully activated TiO2 nanotube arrays for lithium ion batteries and supercapacitors , 2014 .

[55]  Seungho Yu,et al.  Carbon treated self-ordered TiO2 nanotube arrays with enhanced lithium-ion intercalation performance , 2014 .

[56]  Jian Pan,et al.  Titanium dioxide crystals with tailored facets. , 2014, Chemical reviews.

[57]  B. Liaw,et al.  A review of lithium deposition in lithium-ion and lithium metal secondary batteries , 2014 .

[58]  Jian Shi,et al.  One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. , 2014, Chemical reviews.

[59]  S. K. Panda,et al.  Reversible phase transformation of titania (anatase) nanotubes upon electrochemical lithium-intercalation observed by ex situ transmission electron microscopy , 2014 .

[60]  R. Menéndez,et al.  Self-organized amorphous titania nanotubes with deposited graphene film like a new heterostructured electrode for lithium ion batteries , 2014 .

[61]  Marnix Wagemaker,et al.  Impact of Particle Size on the Non-Equilibrium Phase Transition of Lithium-Inserted Anatase TiO2 , 2014 .

[62]  Meng Gu,et al.  Direct Evidence of Lithium-Induced Atomic Ordering in Amorphous TiO2 Nanotubes , 2014 .

[63]  Chong Seung Yoon,et al.  Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. , 2014, Nano letters.

[64]  W. Chu,et al.  Retracted Article: Black mesoporous anatase TiO2 nanoleaves: a high capacity and high rate anode for aqueous Al-ion batteries , 2014 .

[65]  P. Bruce,et al.  Li ion dynamics in TiO2 anode materials with an ordered hierarchical pore structure--insights from ex situ NMR. , 2014, Physical chemistry chemical physics : PCCP.

[66]  J. Flake,et al.  Electrophoretic deposition of reduced graphene oxide nanosheets on TiO2 nanotube arrays for dye-sensitized solar cells , 2013 .

[67]  Marnix Wagemaker,et al.  Nanostructured TiO2 anatase micropatterned three-dimensional electrodes for high-performance Li-ion batteries , 2013 .

[68]  Feng Li,et al.  TiO2/graphene sandwich paper as an anisotropic electrode for high rate lithium ion batteries. , 2013, Nanoscale.

[69]  H. Fritze,et al.  Electrochemical behavior of anodically obtained titania nanotubes in organic carbonate and ionic liquid based Li ion containing electrolytes , 2013 .

[70]  J. Bhattacharya,et al.  Understanding Li diffusion in Li-intercalation compounds. , 2013, Accounts of chemical research.

[71]  F. Wang,et al.  Carbon quantum dot sensitized TiO₂ nanotube arrays for photoelectrochemical hydrogen generation under visible light. , 2013, Nanoscale.

[72]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[73]  N. A. Kyeremateng,et al.  Effect of Sn-doping on the electrochemical behaviour of TiO2 nanotubes as potential negative electrode materials for 3D Li-ion micro batteries , 2013 .

[74]  M. Ge,et al.  Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes , 2013, Nano Research.

[75]  M. Chi,et al.  Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries , 2013 .

[76]  Jin Young Kim,et al.  Tailoring oriented TiO2 nanotube morphology for improved Li storage kinetics , 2013 .

[77]  S. Dai,et al.  High cyclability of ionic liquid-produced TiO2 nanotube arrays as an anode material for lithium-ion batteries , 2012 .

[78]  Xueping Gao,et al.  Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries , 2012 .

[79]  Haitao Huang,et al.  Hydrogenated TiO2 Nanotube Arrays as High‐Rate Anodes for Lithium‐Ion Microbatteries , 2012 .

[80]  Qingliu Wu,et al.  Aligned TiO2 Nanotube Arrays As Durable Lithium-Ion Battery Negative Electrodes , 2012 .

[81]  R. J. Wong,et al.  Combined electrophoretic deposition–anodization method to fabricate reduced graphene oxide–TiO2 nanotube films , 2012 .

[82]  Anton Van der Ven,et al.  Kinetics of Anatase Electrodes: The Role of Ordering, Anisotropy, and Shape Memory Effects , 2012 .

[83]  Dong Hoe Kim,et al.  Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion , 2012 .

[84]  A. J. Frank,et al.  Pseudocapacitive Lithium-Ion Storage in Oriented Anatase TiO2 Nanotube Arrays , 2012 .

[85]  S. K. Panda,et al.  Nanoscale size effect of titania (anatase) nanotubes with uniform wall thickness as high performance anode for lithium-ion secondary battery , 2012 .

[86]  T. Gemming,et al.  Anatase Nanotubes as an Electrode Material for Lithium-Ion Batteries , 2012 .

[87]  Yuehe Lin,et al.  Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties. , 2012, Nanoscale.

[88]  N. A. Kyeremateng,et al.  Properties of Sn-doped TiO2 nanotubes fabricated by anodization of co-sputtered Ti–Sn thin films , 2012 .

[89]  Won‐Hee Ryu,et al.  Electrochemical performance of a smooth and highly ordered TiO2 nanotube electrode for Li-ion batteries , 2012 .

[90]  Ji‐Yong Shin,et al.  Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries , 2012 .

[91]  Christopher S. Johnson,et al.  Self-Improving Anode for Lithium-Ion Batteries Based on Amorphous to Cubic Phase Transition in TiO2 Nanotubes , 2012 .

[92]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[93]  Dominik Samuelis,et al.  Sustained Lithium‐Storage Performance of Hierarchical, Nanoporous Anatase TiO2 at High Rates: Emphasis on Interfacial Storage Phenomena , 2011 .

[94]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[95]  Claus Daniel,et al.  Handbook of Battery Materials: DANIEL:HBK BATTERY MAT E2 O-BK , 2011 .

[96]  Wolfgang Dreyer,et al.  The behavior of a many-particle electrode in a lithium-ion battery , 2011 .

[97]  Ying Wang,et al.  Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties. , 2011, Journal of nanoscience and nanotechnology.

[98]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[99]  L. Kavan,et al.  Polycrystalline TiO2 Anatase with a Large Proportion of Crystal Facets (001): Lithium Insertion Electrochemistry , 2010 .

[100]  P. Schmuki,et al.  Doped TiO2 and TiO2 nanotubes: synthesis and applications. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[101]  Xiao Hua Yang,et al.  Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. , 2010, Chemical communications.

[102]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[103]  M. Wagemaker,et al.  Lithium Storage in Amorphous TiO2 Nanoparticles , 2010 .

[104]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[105]  Seeram Ramakrishna,et al.  Preparation and electrochemical studies of electrospun TiO2 nanofibers and molten salt method nanoparticles , 2010 .

[106]  Doron Aurbach,et al.  On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials† , 2010 .

[107]  Li-Jun Wan,et al.  Symbiotic Coaxial Nanocables: Facile Synthesis and an Efficient and Elegant Morphological Solution to the Lithium Storage Problem , 2010 .

[108]  G. Cao,et al.  TiO2 nanotube arrays annealed in CO exhibiting high performance for lithium ion intercalation , 2009 .

[109]  S. C. Parker,et al.  Lithium Insertion and Transport in the TiO2-B Anode Material: A Computational Study , 2009 .

[110]  G. Thompson,et al.  A lithographic approach to determine volume expansion factors during anodization: Using the example of initiation and growth of TiO2-nanotubes , 2009 .

[111]  P. Schmuki,et al.  Semimetallic TiO2 nanotubes. , 2009, Angewandte Chemie.

[112]  G. Thompson,et al.  Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes , 2009 .

[113]  Stephen J. Harris,et al.  Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents , 2009 .

[114]  G. F. Ortiz,et al.  TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries , 2009 .

[115]  M. Wagemaker,et al.  The electronic structure and ionic diffusion of nanoscale LiTiO2 anatase. , 2009, Physical chemistry chemical physics : PCCP.

[116]  Min Liu,et al.  Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays , 2009, Nanotechnology.

[117]  P. Umek,et al.  Tailoring nanostructured TiO2 for high power Li-ion batteries , 2009 .

[118]  G. Thompson,et al.  Influence of Surface Condition on Nanoporous and Nanotubular Film Formation on Titanium , 2009 .

[119]  J. Macák,et al.  Formation of Double‐Walled TiO2 Nanotubes and Robust Anatase Membranes , 2008 .

[120]  P. Schmuki,et al.  Lattice widening in niobium-doped TiO2 nanotubes: efficient ion intercalation and swift electrochromic contrast. , 2008, Angewandte Chemie.

[121]  Ke‐long Huang,et al.  Electrochemical properties of ordered TiO2 nanotube loaded with Ag nano-particles for lithium anode material , 2008 .

[122]  G. Thompson,et al.  The efficiency of nanotube formation on titanium anodized under voltage and current control in fluoride/glycerol electrolyte , 2008, Nanotechnology.

[123]  S. Nagata,et al.  Tracer Investigation of Pore Formation in Anodic Titania , 2008 .

[124]  J. Macák,et al.  High-Efficiency Conversion of Sputtered Ti Thin Films into TiO2 Nanotubular Layers , 2008 .

[125]  S. Luo,et al.  Graphitized Carbon Nanotubes Formed in TiO2 Nanotube Arrays: A Novel Functional Material with Tube-in-Tube Nanostructure , 2008 .

[126]  P. Schmuki,et al.  Anodic TiO2 Layer Conversion: Fluoride-Induced Rutile Formation at Room Temperature , 2008 .

[127]  Wei Zhang,et al.  Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries , 2007 .

[128]  G. Thompson,et al.  Compositional Evidence for Flow in Anodic Films on Aluminum under High Electric Fields , 2007 .

[129]  Kouji Yasuda,et al.  Mechanistic Aspects of the Self-Organization Process for Oxide Nanotube Formation on Valve Metals , 2007 .

[130]  G. Thompson,et al.  Formation of porous anodic alumina in alkaline borate electrolyte , 2007 .

[131]  M. Wagemaker,et al.  Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.

[132]  J. Macák,et al.  250 µm long anodic TiO2 nanotubes with hexagonal self‐ordering , 2007 .

[133]  Kouji Yasuda,et al.  TiO2 nanotubes: Self-organized electrochemical formation, properties and applications , 2007 .

[134]  Yangfang Sun,et al.  Hydrothermal synthesis of nano-sized anatase TiO2 powders for lithium secondary anode materials , 2006 .

[135]  G. Thompson,et al.  A flow model of porous anodic film growth on aluminium , 2006 .

[136]  K. I. Gnanasekar,et al.  Nanocrystalline TiO2 (anatase) for Li-ion batteries , 2006 .

[137]  Yu‐Guo Guo,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[138]  Jan M. Macak,et al.  Smooth anodic TiO2 nanotubes. , 2005, Angewandte Chemie.

[139]  Krishnan S. Raja,et al.  Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium , 2005 .

[140]  Jan M. Macak,et al.  Initiation and Growth of Self-Organized TiO2 Nanotubes Anodically Formed in NH4F ∕ ( NH4 ) 2SO4 Electrolytes , 2005 .

[141]  C. Rydh,et al.  Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements , 2005 .

[142]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[143]  L. Kavan,et al.  Pseudocapacitive Lithium Storage in TiO2(B) , 2005 .

[144]  Li Wan,et al.  TiO2‐Based Composite Nanotube Arrays Prepared via Layer‐by‐Layer Assembly , 2005 .

[145]  Y. Konishi,et al.  A patterned TiO(2)(anatase)/TiO(2)(rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. , 2002, Angewandte Chemie.

[146]  L. Kavan,et al.  Lithium insertion into self-organized mesoscopic TiO2 (anatase) electrodes , 2000 .

[147]  L. Kavan,et al.  Orientation Dependence of Charge‐Transfer Processes on TiO2 (Anatase) Single Crystals , 2000 .

[148]  A. Goossens,et al.  In Situ X‐Ray Diffraction of Lithium Intercalation in Nanostructured and Thin Film Anatase TiO2 , 1999 .

[149]  J. Schoonman,et al.  Spatial Extent of Lithium Intercalation in Anatase TiO2 , 1999 .

[150]  Marc Aucouturier,et al.  Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy , 1999 .

[151]  D. Aurbach,et al.  The mechanism of lithium intercalation in graphite film electrodes in aprotic media. Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling , 1997 .

[152]  T. Jacobsen,et al.  Lithium insertion in different TiO2 modifications , 1988 .

[153]  B. Scrosati,et al.  Anatase as a cathode material in lithium—organic electrolyte rechargeable batteries , 1981 .

[154]  M. Whittingham,et al.  n‐Butyllithium—An Effective, General Cathode Screening Agent , 1977 .

[155]  G. C. Wood,et al.  The morphology and mechanism of formation of porous anodic films on aluminium , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[156]  D. H. Bradhurst,et al.  The Mechanical Properties of Thin Anodic Films on Aluminum , 1966 .

[157]  N. Mott,et al.  A mechanism for the formation of porous anodic oxide films on aluminium , 1959 .

[158]  A. Aeimbhu Effect of calcination temperature on morphology, wettability and anatase/rutile phase ratio of titanium dioxide nanotube arrays , 2018 .

[159]  Yandi Hu,et al.  Synthesis of N/Fe comodified TiO 2 loaded on bentonite for enhanced photocatalytic activity under UV-Vis light , 2016 .

[160]  S. Bianco,et al.  As-grown vertically aligned amorphous TiO2 nanotube arrays as high-rate Li-based micro-battery anodes with improved long-term performance , 2015 .

[161]  Pu Wang,et al.  Preparation of graphene film decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism , 2014 .

[162]  Zhong-quan Ma,et al.  Enhancing the performance of front-illuminated dye-sensitized solar cells with highly [001] oriented, single-crystal-like TiO2 nanotube arrays , 2014 .

[163]  Xiaoqing Pan,et al.  Water‐Free Titania–Bronze Thin Films with Superfast Lithium‐Ion Transport , 2014, Advanced materials.

[164]  Patrik Schmuki,et al.  Influence of Water Content on the Growth of Anodic TiO2 Nanotubes in Fluoride-Containing Ethylene Glycol Electrolytes , 2010 .

[165]  T. Ohzuku,et al.  Electrochemistry of anatase titanium dioxide in lithium nonaqueous cells , 1985 .