Recent Progress in Understanding Ion Storage in Self‐Organized Anodic TiO 2 Nanotubes
暂无分享,去创建一个
[1] Q. Fu,et al. Electrochemical and structural investigations of different polymorphs of TiO2 in magnesium and hybrid lithium/magnesium batteries , 2018, Electrochimica Acta.
[2] M. Morcrette,et al. All electrochemical process for synthesis of Si coating on TiO2 nanotubes as durable negative electrode material for lithium ion batteries , 2018, Journal of Power Sources.
[3] P. Tartaj,et al. TiO2 Nanostructures as Anode Materials for Li/Na-Ion Batteries. , 2018, Chemical record.
[4] S. Das,et al. An approach to improve the Al3+ ion intercalation in anatase TiO2 nanoparticle for aqueous aluminum-ion battery , 2018, Ionics.
[5] J. Kunze‐Liebhäuser,et al. Nonequilibrium Phase Transitions in Amorphous and Anatase TiO2 Nanotubes , 2018 .
[6] P. Knauth,et al. Niobium Alloying of Self‐Organized TiO2 Nanotubes as an Anode for Lithium‐Ion Microbatteries , 2018 .
[7] M. Shaijumon,et al. Ti3+ Induced Brown TiO2 Nanotubes for High Performance Sodium-Ion Hybrid Capacitors , 2018 .
[8] L. Mai,et al. Achieving rapid Li-ion insertion kinetics in TiO2 mesoporous nanotube arrays for bifunctional high-rate energy storage smart windows. , 2018, Nanoscale.
[9] L. Giebeler,et al. Current Advances in TiO2-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries , 2018 .
[10] Yifei Yuan,et al. Boosting Sodium Storage in TiO2 Nanotube Arrays through Surface Phosphorylation , 2018, Advanced materials.
[11] A. I. Mardare,et al. Optimized Design Principles for Silicon‐Coated Nanostructured Electrode Materials and their Application in High‐Capacity Lithium‐Ion Batteries , 2017 .
[12] S. Das,et al. Anatase TiO2 as an Anode Material for Rechargeable Aqueous Aluminum-Ion Batteries: Remarkable Graphene Induced Aluminum Ion Storage Phenomenon , 2017 .
[13] J. Kunze‐Liebhäuser,et al. The role of surface films during lithiation of amorphous and anatase TiO 2 nanotubes , 2017 .
[14] Zachary D. Hood,et al. In situ TEM observation of the electrochemical lithiation of N-doped anatase TiO2 nanotubes as anodes for lithium-ion batteries , 2017 .
[15] T. Götsch,et al. Preferentially Oriented TiO2 Nanotubes as Anode Material for Li-Ion Batteries: Insight into Li-Ion Storage and Lithiation Kinetics. , 2017, ACS applied materials & interfaces.
[16] M. Salanne,et al. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. , 2017, Nature materials.
[17] Jang‐Yeon Hwang,et al. Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.
[18] F. Bella,et al. Unveiling the controversial mechanism of reversible Na storage in TiO2 nanotube arrays: Amorphous versus anatase TiO2 , 2017, Nano Research.
[19] Qian Sun,et al. Tracking the Effect of Sodium Insertion/Extraction in Amorphous and Anatase TiO2 Nanotubes , 2017 .
[20] Binlin Guo. Double-layer Si/TiO2NTAs as High Performance Anode for Li- ion Batteries , 2017 .
[21] S. Mahapatra,et al. Aluminium-ion batteries: developments and challenges , 2017 .
[22] J. Kunze‐Liebhäuser,et al. Tracking areal lithium densities from neutron activation - quantitative Li determination in self-organized TiO2 nanotube anode materials for Li-ion batteries. , 2017, Physical chemistry chemical physics : PCCP.
[23] M. Kazazi,et al. High surface area TiO2 nanospheres as a high-rate anode material for aqueous aluminium-ion batteries , 2017 .
[24] M. Wilkening,et al. An Electrolyte for Reversible Cycling of Sodium Metal and Intercalation Compounds. , 2017, ChemSusChem.
[25] Xiaodong Chen,et al. Nanostructured TiO2‐Based Anode Materials for High‐Performance Rechargeable Lithium‐Ion Batteries , 2016 .
[26] Jiangfeng Qian,et al. Graphene-supported TiO2 nanospheres as a high-capacity and long-cycle life anode for sodium ion batteries , 2016 .
[27] Xiaolin Xie,et al. Anatase/rutile titania anchored carbon nanotube porous nanocomposites as superior anodes for lithium ion batteries , 2016 .
[28] Yuekun Lai,et al. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications , 2016 .
[29] Minghao Zhang,et al. Investigation of Anatase-TiO2 As an Efficient Electrode Material for Magnesium-Ion Batteries , 2016 .
[30] Jiulin Wang,et al. A High-Performance Rechargeable Mg(2+)/Li(+) Hybrid Battery Using One-Dimensional Mesoporous TiO2(B) Nanoflakes as the Cathode. , 2016, ACS applied materials & interfaces.
[31] Yan Yu,et al. Self‐Supported Nanotube Arrays of Sulfur‐Doped TiO2 Enabling Ultrastable and Robust Sodium Storage , 2016, Advanced materials.
[32] M. Wilkening,et al. Long-Cycle-Life Na-Ion Anodes Based on Amorphous Titania Nanotubes--Interfaces and Diffusion. , 2015, ACS applied materials & interfaces.
[33] Peter Lamp,et al. Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights. , 2015, The journal of physical chemistry letters.
[34] Silvia Leonardi,et al. Oxygen deficient, carbon coated self-organized TiO2 nanotubes as anode material for Li-ion intercalation , 2015 .
[35] R. Yazami,et al. TiO2 polymorphs in ‘rocking-chair’ Li-ion batteries , 2015 .
[36] Kun Xu,et al. Research on the Electrochemical Performance of Rutile and Anatase Composite TiO2 Nanotube Arrays in Lithium-Ion Batteries. , 2015, Journal of nanoscience and nanotechnology.
[37] Xi Chen,et al. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals , 2015, Nature Communications.
[38] Yong Yang,et al. Fabrication of different crystallographically oriented TiO2 nanotube arrays used in dye-sensitized solar cells , 2015 .
[39] R. Gilles,et al. GISAXS and TOF‐GISANS studies on surface and depth morphology of self‐organized TiO2 nanotube arrays: model anode material in Li‐ion batteries , 2015 .
[40] S. Nappini,et al. In‐Situ Carbon Doping of TiO2 Nanotubes Via Anodization in Graphene Oxide Quantum Dot Containing Electrolyte and Carburization to TiOxCy Nanotubes , 2015 .
[41] Leone Spiccia,et al. Dominating Energy Losses in NiO p‐Type Dye‐Sensitized Solar Cells , 2015 .
[42] Jiulin Wang,et al. A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. , 2015, Chemical communications.
[43] J. Bisquert,et al. Facile kinetics of Li-ion intake causes superior rate capability in multiwalled carbon nanotube@TiO2 nanocomposite battery anodes , 2014 .
[44] Jianning Ding,et al. Synthesis of nanoparticles-deposited double-walled TiO₂-B nanotubes with enhanced performance for lithium-ion batteries. , 2014, ACS applied materials & interfaces.
[45] A. Bund,et al. Electrochemical lithiation of Si modified TiO2 nanotube arrays, investigated in ionic liquid electrolyte , 2014 .
[46] N. A. Kyeremateng. Self‐Organised TiO2 Nanotubes for 2D or 3D Li‐Ion Microbatteries , 2014 .
[47] T. Bein,et al. Three-dimensional titanium dioxide nanomaterials. , 2014, Chemical reviews.
[48] P. Schmuki,et al. One-dimensional titanium dioxide nanomaterials: nanotubes. , 2014, Chemical reviews.
[49] Wen Zhao,et al. A facile way to fabricate graphene sheets on TiO2 nanotube arrays for dye-sensitized solar cell applications , 2014, Journal of Materials Science.
[50] Keumnam Cho,et al. A facile approach for carburization of anodically grown titania nanotubes: towards metallization of nanotubes , 2014 .
[51] J. Kunze‐Liebhäuser,et al. Silicon on conductive self-organized TiO2 nanotubes – A high capacity anode material for Li-ion batteries , 2014 .
[52] Yadong Yin,et al. Composite titanium dioxide nanomaterials. , 2014, Chemical reviews.
[53] Francesco De Angelis,et al. Review on recent progress of nanostructured anode materials for Li-ion batteries , 2014 .
[54] Minghong Wu,et al. C-axis preferentially oriented and fully activated TiO2 nanotube arrays for lithium ion batteries and supercapacitors , 2014 .
[55] Seungho Yu,et al. Carbon treated self-ordered TiO2 nanotube arrays with enhanced lithium-ion intercalation performance , 2014 .
[56] Jian Pan,et al. Titanium dioxide crystals with tailored facets. , 2014, Chemical reviews.
[57] B. Liaw,et al. A review of lithium deposition in lithium-ion and lithium metal secondary batteries , 2014 .
[58] Jian Shi,et al. One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. , 2014, Chemical reviews.
[59] S. K. Panda,et al. Reversible phase transformation of titania (anatase) nanotubes upon electrochemical lithium-intercalation observed by ex situ transmission electron microscopy , 2014 .
[60] R. Menéndez,et al. Self-organized amorphous titania nanotubes with deposited graphene film like a new heterostructured electrode for lithium ion batteries , 2014 .
[61] Marnix Wagemaker,et al. Impact of Particle Size on the Non-Equilibrium Phase Transition of Lithium-Inserted Anatase TiO2 , 2014 .
[62] Meng Gu,et al. Direct Evidence of Lithium-Induced Atomic Ordering in Amorphous TiO2 Nanotubes , 2014 .
[63] Chong Seung Yoon,et al. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. , 2014, Nano letters.
[64] W. Chu,et al. Retracted Article: Black mesoporous anatase TiO2 nanoleaves: a high capacity and high rate anode for aqueous Al-ion batteries , 2014 .
[65] P. Bruce,et al. Li ion dynamics in TiO2 anode materials with an ordered hierarchical pore structure--insights from ex situ NMR. , 2014, Physical chemistry chemical physics : PCCP.
[66] J. Flake,et al. Electrophoretic deposition of reduced graphene oxide nanosheets on TiO2 nanotube arrays for dye-sensitized solar cells , 2013 .
[67] Marnix Wagemaker,et al. Nanostructured TiO2 anatase micropatterned three-dimensional electrodes for high-performance Li-ion batteries , 2013 .
[68] Feng Li,et al. TiO2/graphene sandwich paper as an anisotropic electrode for high rate lithium ion batteries. , 2013, Nanoscale.
[69] H. Fritze,et al. Electrochemical behavior of anodically obtained titania nanotubes in organic carbonate and ionic liquid based Li ion containing electrolytes , 2013 .
[70] J. Bhattacharya,et al. Understanding Li diffusion in Li-intercalation compounds. , 2013, Accounts of chemical research.
[71] F. Wang,et al. Carbon quantum dot sensitized TiO₂ nanotube arrays for photoelectrochemical hydrogen generation under visible light. , 2013, Nanoscale.
[72] Donghan Kim,et al. Sodium‐Ion Batteries , 2013 .
[73] N. A. Kyeremateng,et al. Effect of Sn-doping on the electrochemical behaviour of TiO2 nanotubes as potential negative electrode materials for 3D Li-ion micro batteries , 2013 .
[74] M. Ge,et al. Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes , 2013, Nano Research.
[75] M. Chi,et al. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries , 2013 .
[76] Jin Young Kim,et al. Tailoring oriented TiO2 nanotube morphology for improved Li storage kinetics , 2013 .
[77] S. Dai,et al. High cyclability of ionic liquid-produced TiO2 nanotube arrays as an anode material for lithium-ion batteries , 2012 .
[78] Xueping Gao,et al. Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries , 2012 .
[79] Haitao Huang,et al. Hydrogenated TiO2 Nanotube Arrays as High‐Rate Anodes for Lithium‐Ion Microbatteries , 2012 .
[80] Qingliu Wu,et al. Aligned TiO2 Nanotube Arrays As Durable Lithium-Ion Battery Negative Electrodes , 2012 .
[81] R. J. Wong,et al. Combined electrophoretic deposition–anodization method to fabricate reduced graphene oxide–TiO2 nanotube films , 2012 .
[82] Anton Van der Ven,et al. Kinetics of Anatase Electrodes: The Role of Ordering, Anisotropy, and Shape Memory Effects , 2012 .
[83] Dong Hoe Kim,et al. Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion , 2012 .
[84] A. J. Frank,et al. Pseudocapacitive Lithium-Ion Storage in Oriented Anatase TiO2 Nanotube Arrays , 2012 .
[85] S. K. Panda,et al. Nanoscale size effect of titania (anatase) nanotubes with uniform wall thickness as high performance anode for lithium-ion secondary battery , 2012 .
[86] T. Gemming,et al. Anatase Nanotubes as an Electrode Material for Lithium-Ion Batteries , 2012 .
[87] Yuehe Lin,et al. Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties. , 2012, Nanoscale.
[88] N. A. Kyeremateng,et al. Properties of Sn-doped TiO2 nanotubes fabricated by anodization of co-sputtered Ti–Sn thin films , 2012 .
[89] Won‐Hee Ryu,et al. Electrochemical performance of a smooth and highly ordered TiO2 nanotube electrode for Li-ion batteries , 2012 .
[90] Ji‐Yong Shin,et al. Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries , 2012 .
[91] Christopher S. Johnson,et al. Self-Improving Anode for Lithium-Ion Batteries Based on Amorphous to Cubic Phase Transition in TiO2 Nanotubes , 2012 .
[92] Hui Xiong,et al. Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .
[93] Dominik Samuelis,et al. Sustained Lithium‐Storage Performance of Hierarchical, Nanoporous Anatase TiO2 at High Rates: Emphasis on Interfacial Storage Phenomena , 2011 .
[94] Doron Aurbach,et al. Challenges in the development of advanced Li-ion batteries: a review , 2011 .
[95] Claus Daniel,et al. Handbook of Battery Materials: DANIEL:HBK BATTERY MAT E2 O-BK , 2011 .
[96] Wolfgang Dreyer,et al. The behavior of a many-particle electrode in a lithium-ion battery , 2011 .
[97] Ying Wang,et al. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties. , 2011, Journal of nanoscience and nanotechnology.
[98] Patrik Schmuki,et al. TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.
[99] L. Kavan,et al. Polycrystalline TiO2 Anatase with a Large Proportion of Crystal Facets (001): Lithium Insertion Electrochemistry , 2010 .
[100] P. Schmuki,et al. Doped TiO2 and TiO2 nanotubes: synthesis and applications. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.
[101] Xiao Hua Yang,et al. Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. , 2010, Chemical communications.
[102] Wolfgang Dreyer,et al. The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.
[103] M. Wagemaker,et al. Lithium Storage in Amorphous TiO2 Nanoparticles , 2010 .
[104] B. Scrosati,et al. Lithium batteries: Status, prospects and future , 2010 .
[105] Seeram Ramakrishna,et al. Preparation and electrochemical studies of electrospun TiO2 nanofibers and molten salt method nanoparticles , 2010 .
[106] Doron Aurbach,et al. On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials† , 2010 .
[107] Li-Jun Wan,et al. Symbiotic Coaxial Nanocables: Facile Synthesis and an Efficient and Elegant Morphological Solution to the Lithium Storage Problem , 2010 .
[108] G. Cao,et al. TiO2 nanotube arrays annealed in CO exhibiting high performance for lithium ion intercalation , 2009 .
[109] S. C. Parker,et al. Lithium Insertion and Transport in the TiO2-B Anode Material: A Computational Study , 2009 .
[110] G. Thompson,et al. A lithographic approach to determine volume expansion factors during anodization: Using the example of initiation and growth of TiO2-nanotubes , 2009 .
[111] P. Schmuki,et al. Semimetallic TiO2 nanotubes. , 2009, Angewandte Chemie.
[112] G. Thompson,et al. Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes , 2009 .
[113] Stephen J. Harris,et al. Solubility of Lithium Salts Formed on the Lithium-Ion Battery Negative Electrode Surface in Organic Solvents , 2009 .
[114] G. F. Ortiz,et al. TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries , 2009 .
[115] M. Wagemaker,et al. The electronic structure and ionic diffusion of nanoscale LiTiO2 anatase. , 2009, Physical chemistry chemical physics : PCCP.
[116] Min Liu,et al. Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays , 2009, Nanotechnology.
[117] P. Umek,et al. Tailoring nanostructured TiO2 for high power Li-ion batteries , 2009 .
[118] G. Thompson,et al. Influence of Surface Condition on Nanoporous and Nanotubular Film Formation on Titanium , 2009 .
[119] J. Macák,et al. Formation of Double‐Walled TiO2 Nanotubes and Robust Anatase Membranes , 2008 .
[120] P. Schmuki,et al. Lattice widening in niobium-doped TiO2 nanotubes: efficient ion intercalation and swift electrochromic contrast. , 2008, Angewandte Chemie.
[121] Ke‐long Huang,et al. Electrochemical properties of ordered TiO2 nanotube loaded with Ag nano-particles for lithium anode material , 2008 .
[122] G. Thompson,et al. The efficiency of nanotube formation on titanium anodized under voltage and current control in fluoride/glycerol electrolyte , 2008, Nanotechnology.
[123] S. Nagata,et al. Tracer Investigation of Pore Formation in Anodic Titania , 2008 .
[124] J. Macák,et al. High-Efficiency Conversion of Sputtered Ti Thin Films into TiO2 Nanotubular Layers , 2008 .
[125] S. Luo,et al. Graphitized Carbon Nanotubes Formed in TiO2 Nanotube Arrays: A Novel Functional Material with Tube-in-Tube Nanostructure , 2008 .
[126] P. Schmuki,et al. Anodic TiO2 Layer Conversion: Fluoride-Induced Rutile Formation at Room Temperature , 2008 .
[127] Wei Zhang,et al. Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries , 2007 .
[128] G. Thompson,et al. Compositional Evidence for Flow in Anodic Films on Aluminum under High Electric Fields , 2007 .
[129] Kouji Yasuda,et al. Mechanistic Aspects of the Self-Organization Process for Oxide Nanotube Formation on Valve Metals , 2007 .
[130] G. Thompson,et al. Formation of porous anodic alumina in alkaline borate electrolyte , 2007 .
[131] M. Wagemaker,et al. Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.
[132] J. Macák,et al. 250 µm long anodic TiO2 nanotubes with hexagonal self‐ordering , 2007 .
[133] Kouji Yasuda,et al. TiO2 nanotubes: Self-organized electrochemical formation, properties and applications , 2007 .
[134] Yangfang Sun,et al. Hydrothermal synthesis of nano-sized anatase TiO2 powders for lithium secondary anode materials , 2006 .
[135] G. Thompson,et al. A flow model of porous anodic film growth on aluminium , 2006 .
[136] K. I. Gnanasekar,et al. Nanocrystalline TiO2 (anatase) for Li-ion batteries , 2006 .
[137] Yu‐Guo Guo,et al. High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .
[138] Jan M. Macak,et al. Smooth anodic TiO2 nanotubes. , 2005, Angewandte Chemie.
[139] Krishnan S. Raja,et al. Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium , 2005 .
[140] Jan M. Macak,et al. Initiation and Growth of Self-Organized TiO2 Nanotubes Anodically Formed in NH4F ∕ ( NH4 ) 2SO4 Electrolytes , 2005 .
[141] C. Rydh,et al. Energy analysis of batteries in photovoltaic systems. Part I: Performance and energy requirements , 2005 .
[142] Patrik Schmuki,et al. High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.
[143] L. Kavan,et al. Pseudocapacitive Lithium Storage in TiO2(B) , 2005 .
[144] Li Wan,et al. TiO2‐Based Composite Nanotube Arrays Prepared via Layer‐by‐Layer Assembly , 2005 .
[145] Y. Konishi,et al. A patterned TiO(2)(anatase)/TiO(2)(rutile) bilayer-type photocatalyst: effect of the anatase/rutile junction on the photocatalytic activity. , 2002, Angewandte Chemie.
[146] L. Kavan,et al. Lithium insertion into self-organized mesoscopic TiO2 (anatase) electrodes , 2000 .
[147] L. Kavan,et al. Orientation Dependence of Charge‐Transfer Processes on TiO2 (Anatase) Single Crystals , 2000 .
[148] A. Goossens,et al. In Situ X‐Ray Diffraction of Lithium Intercalation in Nanostructured and Thin Film Anatase TiO2 , 1999 .
[149] J. Schoonman,et al. Spatial Extent of Lithium Intercalation in Anatase TiO2 , 1999 .
[150] Marc Aucouturier,et al. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy , 1999 .
[151] D. Aurbach,et al. The mechanism of lithium intercalation in graphite film electrodes in aprotic media. Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling , 1997 .
[152] T. Jacobsen,et al. Lithium insertion in different TiO2 modifications , 1988 .
[153] B. Scrosati,et al. Anatase as a cathode material in lithium—organic electrolyte rechargeable batteries , 1981 .
[154] M. Whittingham,et al. n‐Butyllithium—An Effective, General Cathode Screening Agent , 1977 .
[155] G. C. Wood,et al. The morphology and mechanism of formation of porous anodic films on aluminium , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[156] D. H. Bradhurst,et al. The Mechanical Properties of Thin Anodic Films on Aluminum , 1966 .
[157] N. Mott,et al. A mechanism for the formation of porous anodic oxide films on aluminium , 1959 .
[158] A. Aeimbhu. Effect of calcination temperature on morphology, wettability and anatase/rutile phase ratio of titanium dioxide nanotube arrays , 2018 .
[159] Yandi Hu,et al. Synthesis of N/Fe comodified TiO 2 loaded on bentonite for enhanced photocatalytic activity under UV-Vis light , 2016 .
[160] S. Bianco,et al. As-grown vertically aligned amorphous TiO2 nanotube arrays as high-rate Li-based micro-battery anodes with improved long-term performance , 2015 .
[161] Pu Wang,et al. Preparation of graphene film decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism , 2014 .
[162] Zhong-quan Ma,et al. Enhancing the performance of front-illuminated dye-sensitized solar cells with highly [001] oriented, single-crystal-like TiO2 nanotube arrays , 2014 .
[163] Xiaoqing Pan,et al. Water‐Free Titania–Bronze Thin Films with Superfast Lithium‐Ion Transport , 2014, Advanced materials.
[164] Patrik Schmuki,et al. Influence of Water Content on the Growth of Anodic TiO2 Nanotubes in Fluoride-Containing Ethylene Glycol Electrolytes , 2010 .
[165] T. Ohzuku,et al. Electrochemistry of anatase titanium dioxide in lithium nonaqueous cells , 1985 .