EVOLUTION OF WARPED ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI. I. ROLES OF FEEDING AT THE OUTER BOUNDARIES

We investigate the alignment processes of spinning black holes and their surrounding warped accretion disks in a frame of two different types of feeding at the outer boundaries. We consider (1) fixed flows in which gas is continually fed with a preferred angular momentum, and (2) free flows in which there is no gas supply and the disks diffuse freely at their outer edges. As expected, we find that for the cases of fixed flows the black hole disk systems always align on timescales of several 106 yr, irrespective of the initial inclinations. If the initial inclination angles are larger than π/2, the black hole accretion transits from retrograde to prograde fashion, and the accreted mass onto the black holes during these two phases is comparable. On the other hand, for the cases of free flows, both alignments and anti-alignments can occur, depending on the initial inclinations and the ratios of the angular momentum of the disks to that of the black holes. In such cases, the disks will be consumed within timescales of 106 yr by black holes accreting at the Eddington limit. We propose that there is a close connection between the black hole spin and the lifetime for which the feeding persists, which determines the observable episodic lifetimes of active galactic nuclei. We conclude that careful inclusion of the disk feeding at the outer boundaries is crucial for modeling the evolution of the black hole spin.

[1]  R. Blandford,et al.  Alignment of Magnetized Accretion Disks and Relativistic Jets with Spinning Black Holes , 2012, Science.

[2]  A. Perego,et al.  ON THE ORIENTATION AND MAGNITUDE OF THE BLACK HOLE SPIN IN GALACTIC NUCLEI , 2012, 1211.4871.

[3]  Xiaoxia Zhang,et al.  THE COSMIC EVOLUTION OF MASSIVE BLACK HOLES AND GALAXY SPHEROIDS: GLOBAL CONSTRAINTS AT REDSHIFT z ≲ 1.2 , 2012, 1210.4019.

[4]  Daniel J. Price,et al.  TEARING UP THE DISK: HOW BLACK HOLES ACCRETE , 2012, 1209.1393.

[5]  L. Ho,et al.  COSMOLOGICAL EVOLUTION OF SUPERMASSIVE BLACK HOLES. II. EVIDENCE FOR DOWNSIZING OF SPIN EVOLUTION , 2012, 1202.3516.

[6]  P. Martini,et al.  MEASUREMENT OF THE MASS AND STELLAR POPULATION DISTRIBUTION IN M82 WITH THE LBT , 2012, 1202.0824.

[7]  E. Barausse The evolution of massive black holes and their spins in their galactic hosts , 2012, 1201.5888.

[8]  P. Hopkins,et al.  Why Are AGN and Host Galaxies Misaligned , 2011, 1111.1236.

[9]  T. Alexander,et al.  THE TORQUING OF CIRCUMNUCLEAR ACCRETION DISKS BY STARS AND THE EVOLUTION OF MASSIVE BLACK HOLES , 2011, 1109.5384.

[10]  L. Ho,et al.  COSMOLOGICAL EVOLUTION OF SUPERMASSIVE BLACK HOLES. I. MASS FUNCTION AT 0 < z ≲ 2 , 2011, 1109.0089.

[11]  S. Furlanetto,et al.  CONSTRAINTS ON QUASAR LIFETIMES AND BEAMING FROM THE He ii Lyα FOREST , 2010, 1008.4609.

[12]  Z. Shao,et al.  THE ORIENTATION OF THE NUCLEAR OBSCURER OF THE ACTIVE GALACTIC NUCLEI , 2010, 1011.2802.

[13]  Yan-Rong Li,et al.  ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI: GAS SUPPLY DRIVEN BY STAR FORMATION , 2010, 1007.4060.

[14]  Andrew J. Benson,et al.  Galaxy formation spanning cosmic history , 2010, 1003.0011.

[15]  University of Exeter,et al.  On the diffusive propagation of warps in thin accretion discs , 2010, 1002.2973.

[16]  Jarrett L. Johnson,et al.  Supernovae‐induced accretion and star formation in the inner kiloparsec of a gaseous disc , 2010, 1002.0590.

[17]  Yan-Rong Li,et al.  EPISODIC ACTIVITIES OF SUPERMASSIVE BLACK HOLES AT REDSHIFT z ⩽ 2: DRIVEN BY MERGERS? , 2010, 1001.5170.

[18]  C. Baugh,et al.  Grand unification of AGN activity in the ΛCDM cosmology , 2009, 0911.1128.

[19]  A. Perego,et al.  Dual black holes in merger remnants – II. Spin evolution and gravitational recoil , 2009, 0910.5729.

[20]  A. Perego,et al.  Mass and spin co-evolution during the alignment of a black hole in a warped accretion disc , 2009, 0907.3742.

[21]  F. Yuan,et al.  A steady-state solution for warped accretion discs , 2009, 0905.3935.

[22]  Shu Zhang,et al.  EPISODIC RANDOM ACCRETION AND THE COSMOLOGICAL EVOLUTION OF SUPERMASSIVE BLACK HOLE SPINS , 2009, 0904.1896.

[23]  D. Kirkman,et al.  The transverse proximity effect in the z∼ 2 Lyman α forest suggests quasi-stellar object episodic lifetimes of ∼1 Myr , 2008, 0809.2277.

[24]  K. Wada,et al.  Coevolution of Supermassive Black Holes and Circumnuclear Disks , 2008, 0803.2271.

[25]  A. R. King,et al.  The evolution of black hole mass and spin in active galactic nuclei , 2008, 0801.1564.

[26]  C. Steidel,et al.  Detection of the Transverse Proximity Effect: Radiative Feedback from Bright QSOs , 2007, 0711.4113.

[27]  C. Tout,et al.  Alignment and precession of a black hole with a warped accretion disc , 2007, 0708.2034.

[28]  C. Leitherer,et al.  An Atlas of the Circumnuclear Regions of 75 Seyfert Galaxies in the Near-Ultraviolet with the Hubble Space Telescope Advanced Camera for Surveys , 2007, 0704.3617.

[29]  J. Pringle,et al.  Growing supermassive black holes by chaotic accretion , 2006, astro-ph/0609598.

[30]  E. Carretti,et al.  B-Mode contamination by synchrotron emission from 3-years WMAP data , 2006, astro-ph/0609288.

[31]  Yan-mei Chen,et al.  Cosmological Evolution of the Duty Cycle of Quasars , 2006, astro-ph/0606704.

[32]  S. Baum,et al.  A Survey of Kiloparsec-Scale Radio Outflows in Radio-Quiet Active Galactic Nuclei , 2006, astro-ph/0604219.

[33]  G. Pringle,et al.  The evolution of misaligned accretion discs and spinning black holes , 2006, astro-ph/0602306.

[34]  J. Pringle,et al.  Aligning spinning black holes and accretion discs , 2005, astro-ph/0507098.

[35]  P. Martini,et al.  Coevolution of Black Holes and Galaxies , 2004 .

[36]  Jeremy Goodman,et al.  Self-gravity and quasi-stellar object discs , 2003 .

[37]  James B. Hartle,et al.  Gravity: An Introduction to Einstein's General Relativity , 2003 .

[38]  J. Pringle,et al.  The evolution of a warped disc around a Kerr black hole , 2002, astro-ph/0208206.

[39]  C. Norman,et al.  Obscuring Material around Seyfert Nuclei with Starbursts , 2002, astro-ph/0201035.

[40]  G. Ogilvie An alpha theory of time‐dependent warped accretion discs , 2000 .

[41]  A. Kinney,et al.  Jet Directions in Seyfert Galaxies , 2000, astro-ph/0002131.

[42]  Richard P. NelsonJohn C.B. Papaloizou,et al.  Hydrodynamic simulations of the Bardeen–Petterson effect , 2000, astro-ph/0001439.

[43]  J. Papaloizou,et al.  HYDRODYNAMIC SIMULATIONS OF PROPAGATING WARPS AND BENDING WAVES IN ACCRETION DISCS , 1999, astro-ph/9907076.

[44]  G. Ogilvie,et al.  The non-linear fluid dynamics of a warped accretion disc , 1998, astro-ph/9812073.

[45]  P. Scheuer,et al.  THE REALIGNMENT OF A BLACK HOLE MISALIGNED WITH ITS ACCRETION DISC , 1996 .

[46]  J. Papaloizou,et al.  The tidally induced warping, precession and truncation of accretion discs , 1996, astro-ph/9604013.

[47]  D. Lin,et al.  0n the dynamics of warped accretion disks , 1995 .

[48]  J. Pringle A simple approach to the evolution of twisted accretion discs , 1992 .

[49]  M. Begelman,et al.  Self-gravitating accretion disks in active galactic nuclei , 1987, Nature.

[50]  D. Raine,et al.  Accretion power in astrophysics , 1985 .

[51]  J. Papaloizou,et al.  The time-dependence of non-planar accretion discs , 1983 .

[52]  Andrzej Soƚtan,et al.  Masses of quasars , 1982 .

[53]  B. Paczyński A model of selfgravitating accretion disk. , 1978 .

[54]  J. Bardeen,et al.  The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes , 1975 .

[55]  K. Thorne Disk-Accretion onto a Black Hole. II. Evolution of the Hole , 1974 .