Flexible modeling based on copulas in nonparametric median regression

Consider the model Y=m(X)+@e, where m(@?)=med(Y|@?) is unknown but smooth. It is often assumed that @e and X are independent. However, in practice this assumption is violated in many cases. In this paper we propose modeling the dependence between @e and X by means of a copula model, i.e. (@e,X)~C"@q(F"@e(@?),F"X(@?)), where C"@q is a copula function depending on an unknown parameter @q, and F"@e and F"X are the marginals of @e and X. Since many parametric copula families contain the independent copula as a special case, the so-obtained regression model is more flexible than the 'classical' regression model. We estimate the parameter @q via a pseudo-likelihood method and prove the asymptotic normality of the estimator, based on delicate empirical process theory. We also study the estimation of the conditional distribution of Y given X. The procedure is illustrated by means of a simulation study, and the method is applied to data on food expenditures in households.

[1]  Xiaohong Chen,et al.  Efficient Estimation of Semiparametric Multivariate Copula Models Efficient Estimation of Semiparametric Multivariate Copula Models * , 2004 .

[2]  Jean-David Fermanian,et al.  Goodness-of-fit tests for copulas , 2005 .

[3]  Martin T. Wells,et al.  Model Selection and Semiparametric Inference for Bivariate Failure-Time Data , 2000 .

[4]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[5]  I. Keilegom,et al.  Tests for Independence in Nonparametric Regression , 2006 .

[6]  Ling Hu Dependence patterns across financial markets: a mixed copula approach , 2006 .

[7]  Arthur Charpentier,et al.  Lower Tail Dependence for Archimedean Copulas: Characterizations and Pitfalls , 2006 .

[8]  R. Nelsen An Introduction to Copulas , 1998 .

[9]  M. Akritas,et al.  Non‐parametric Estimation of the Residual Distribution , 2001 .

[10]  NONNEGATIVITY CONSTRAINTS AND INTRATEMPORAL UNCERTAINTY IN A MULTI-GOOD LIFE-CYCLE MODEL , 1995 .

[11]  James L. Powell,et al.  Estimation of semiparametric models , 1994 .

[12]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[13]  O. Scaillet,et al.  Multivariate Wavelet-Based Shape Preserving Estimation for Dependent Observations , 2005 .

[14]  Noël Veraverbeke,et al.  A copula‐graphic estimator for the conditional survival function under dependent censoring , 2005 .

[15]  B. Rémillard,et al.  Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models , 2005 .

[16]  Xiaohong Chen,et al.  Estimation of Semiparametric Models When the Criterion Function is Not Smooth , 2002 .

[17]  J. Segers,et al.  RANK-BASED INFERENCE FOR BIVARIATE EXTREME-VALUE COPULAS , 2007, 0707.4098.

[18]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[19]  H. Joe Multivariate models and dependence concepts , 1998 .

[20]  H. Tsukahara,et al.  Semiparametric estimation in copula models , 2005 .

[21]  I. Keilegom,et al.  Specification tests in nonparametric regression , 2008 .

[22]  Xiaohong Chen,et al.  A MODEL SELECTION TEST FOR BIVARIATE FAILURE-TIME DATA , 2007, Econometric Theory.

[23]  Olivier Scaillet,et al.  Kernel Based Goodness-of-Fit Test for Copulas with Fixed Smoothing Parameters , 2005 .

[24]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .