Local multigrid solvers for adaptive isogeometric analysis in hierarchical spline spaces
暂无分享,去创建一个
[1] Karl Scherer,et al. New Upper Bound for the B-Spline Basis Condition Number , 1999 .
[2] C. D. Boor,et al. Splines as linear combinations of B-splines. A Survey , 1976 .
[3] R. Hiptmair,et al. Local Multigrid in H(curl) , 2009, 0901.0764.
[4] Bert Jüttler,et al. Multigrid Methods for Isogeometric Analysis with THB-Splines , 2016 .
[5] Guido Kanschat,et al. Adaptive Multilevel Methods with Local Smoothing for H1- and Hcurl-Conforming High Order Finite Element Methods , 2011, SIAM J. Sci. Comput..
[6] Dirk Praetorius,et al. Adaptive IGAFEM with optimal convergence rates: Hierarchical B-splines , 2017, 1701.07764.
[7] Zhiming Chen,et al. Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes for second order elliptic problems , 2006 .
[8] Carlotta Giannelli,et al. Complexity of hierarchical refinement for a class of admissible mesh configurations , 2015, Comput. Aided Geom. Des..
[9] S. McCormick,et al. The fast adaptive composite grid (FAC) method for elliptic equation , 1986 .
[10] J. Zolésio,et al. Springer series in Computational Mathematics , 1992 .
[11] Tom Lyche,et al. Foundations of Spline Theory: B-Splines, Spline Approximation, and Hierarchical Refinement , 2018 .
[12] H. Yserentant. Old and new convergence proofs for multigrid methods , 1993, Acta Numerica.
[13] Hendrik Speleers,et al. Effortless quasi-interpolation in hierarchical spaces , 2016, Numerische Mathematik.
[14] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[15] Hendrik Speleers,et al. Robust and optimal multi-iterative techniques for IgA Galerkin linear systems This is a preprint of a paper published in Comput. Methods Appl. Mech. Engrg. 284 (2015) 230264. , 2015 .
[16] W. Dahmen,et al. Multilevel preconditioning , 1992 .
[17] Joseph E. Pasciak,et al. New estimates for multilevel algorithms including the V-cycle , 1993 .
[18] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[19] Giancarlo Sangalli,et al. BPX-preconditioning for isogeometric analysis , 2013 .
[20] Achi Brandt,et al. Local mesh refinement multilevel techniques , 1987 .
[21] Hendrik Speleers,et al. Symbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis , 2017, SIAM J. Numer. Anal..
[22] Rafael Vázquez Hernández,et al. BPX preconditioners for isogeometric analysis using analysis-suitable T-splines , 2018, IMA Journal of Numerical Analysis.
[23] Jinchao Xu,et al. Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .
[24] Harry Yserentant,et al. A basic norm equivalence for the theory of multilevel methods , 1993 .
[25] Clemens Hofreither,et al. Robust Multigrid for Isogeometric Analysis Based on Stable Splittings of Spline Spaces , 2016, SIAM J. Numer. Anal..
[26] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[27] Clemens Hofreither,et al. A robust multigrid method for Isogeometric Analysis in two dimensions using boundary correction , 2015, 1512.07091.
[28] Clemens Hofreither,et al. Spectral Analysis of Geometric Multigrid Methods for Isogeometric Analysis , 2014, NMA.
[29] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[30] Carlotta Giannelli,et al. Adaptive isogeometric methods with hierarchical splines: Optimality and convergence rates , 2017 .
[31] Hendrik Speleers,et al. Hierarchical spline spaces: quasi-interpolants and local approximation estimates , 2017, Adv. Comput. Math..
[32] R. Bank,et al. The hierarchical basis multigrid method , 1988 .
[33] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[34] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[35] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[36] Carlotta Giannelli,et al. Adaptive isogeometric methods with hierarchical splines: error estimator and convergence , 2015, 1502.00565.
[37] William F. Mitchell,et al. Optimal Multilevel Iterative Methods for Adaptive Grids , 1992, SIAM J. Sci. Comput..
[38] Ricardo H. Nochetto,et al. Optimal multilevel methods for graded bisection grids , 2012, Numerische Mathematik.
[39] Peter Oswald,et al. Multilevel Finite Element Approximation , 1994 .