Multi-cycling instrumented nanoindentation of a Ti-23Nb-0.7Ta-2Zr-1.2O alloy in annealed condition

Abstract In this study, depth-dependent mechanical properties ( i.e. hardness, elastic modulus, and indentation size effect) as well as strain rate sensitivity of a new class of titanium based alloys, Ti-23Nb-0.7Ta-2Zr-1.2O, are considered. To this end, local deformation micro-mechanisms of this alloy are investigated systematically through a constant-strain rate (CSR) instrumented nanoindentation testing technique. The CSR nanoindentation tests were performed at ambient (room) temperature with nominal indentation depths of 100–2000 nm and strain rates of 0.005, 0.05, and 0.5 s −1 using a Berkovich pyramidal indenter. Nanoindentation is a particularly reliable tool for studying elastic/plastic behavior of metallic alloys. Large strain gradients around the indenter should reveal and help clarify the thermally activated mechanisms contributing to the plastic deformation processes which can quantitatively be interpreted by examining the rate sensitivity index, m , and activation volume. Indentation results show that the strain rate sensitivity and activation volume, Burger’s vector times activation area, are depth-dependent phenomena revealing different controlling plastic deformation mechanisms.

[1]  A. Minor,et al.  The deformation of “Gum Metal” in nanoindentation , 2008 .

[2]  G. Pharr,et al.  The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations , 2010 .

[3]  Jian Sun,et al.  Substructure of recovered Ti-23Nb-0.7Ta-22r-O alloy , 2007 .

[4]  Mark F. Horstemeyer,et al.  Interpretations of Indentation Size Effects , 2002 .

[5]  M. Haghshenas,et al.  Indentation-based assessment of the dependence of geometrically necessary dislocations upon depth and strain rate in FCC materials , 2013 .

[6]  I. Ovid’ko,et al.  Giant faults in deformed Gum Metal , 2008 .

[7]  D. Seidman,et al.  Microscopic study of gum-metal alloys: A role of trace oxygen for dislocation-free deformation , 2016 .

[8]  T. Sritharan,et al.  Cyclic loading as an extended nanoindentation technique , 2006 .

[9]  Julia R. Greer,et al.  Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation , 2007 .

[10]  V. Cech,et al.  Elastic Modulus and Hardness of Plasma‐Polymerized Organosilicones Evaluated by Nanoindentation Techniques , 2015 .

[11]  Taketo Sakuma,et al.  Multifunctional Alloys Obtained via a Dislocation-Free Plastic Deformation Mechanism , 2003, Science.

[12]  Andrew M. Minor,et al.  Nanomechanical Testing of Gum Metal , 2010 .

[13]  S. Kuramoto,et al.  Elastic deformation behavior of multi-functional Ti-Nb-Ta-Zr-O alloys , 2005 .

[14]  I. Manika,et al.  Size effects in micro- and nanoscale indentation , 2006 .

[15]  Keh Chih Hwang,et al.  A model of size effects in nano-indentation , 2006 .

[16]  H. Xing,et al.  Mechanical twinning and omega transition by ⟨111⟩ {112} shear in a metastable β titanium alloy , 2008 .

[17]  N. Gao,et al.  The influence of indenter tip rounding on the indentation size effect , 2010 .

[18]  M. Haghshenas,et al.  Assessment of the depth dependence of the indentation stress during constant strain rate nanoindentation of 70/30 brass , 2013 .

[19]  S. Kuramoto,et al.  Elastic properties of Gum Metal , 2006 .

[20]  M. Haghshenas,et al.  Depth dependence and strain rate sensitivity of indentation stress of 6061 aluminium alloy , 2012 .

[21]  Y. Murakami,et al.  Study of the nanostructure of Gum Metal using energy-filtered transmission electron microscopy , 2009 .

[22]  Q. Yao,et al.  Origin of substantial plastic deformation in Gum Metals , 2008 .

[23]  Yury Gogotsi,et al.  Cyclic nanoindentation and Raman microspectroscopy study of phase transformations in semiconductors , 2000 .

[24]  M. Niinomi,et al.  Mechanical Properties and Phase Stability of Ti-Nb-Ta-Zr-O Alloys , 2007 .

[25]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[26]  M. Jackson,et al.  Determination of (C11-C12) in Ti–36Nb–2Ta–3Zr–0.3O (wt.%) (Gum metal) , 2008 .

[27]  C. Tasan,et al.  On dislocation involvement in Ti–Nb gum metal plasticity , 2013 .

[28]  J. Greer,et al.  Nanoscale gold pillars strengthened through dislocation starvation , 2006 .

[29]  Xiangkang Meng,et al.  The rate sensitivity and plastic deformation of nanocrystalline tantalum films at nanoscale , 2011, Nanoscale research letters.

[30]  P. Huang,et al.  Depth dependent strain rate sensitivity and inverse indentation size effect of hardness in body-centered cubic nanocrystalline metals , 2014 .

[31]  P. Castany,et al.  Mechanisms of deformation in gum metal TNTZ-O and TNTZ titanium alloys: A comparative study on the oxygen influence , 2011 .

[32]  D. Kaur,et al.  Room temperature nanoindentation creep of nanograined NiTiW shape memory alloy thin films , 2014 .

[33]  C. Tasan,et al.  Deformation mechanism of ω-enriched Ti–Nb-based gum metal: Dislocation channeling and deformation induced ω–β transformation , 2015 .

[34]  S. Takeuchi,et al.  Basic Deformation Mechanism of Bcc Titanium-Based Alloy of Gum Metal , 2016 .

[35]  D. Chrzan,et al.  The mechanism of strength and deformation in Gum Metal , 2013 .

[36]  Hong Wu,et al.  Room temperature creep behavior of Ti–Nb–Ta–Zr–O alloy , 2016 .

[37]  P. Castany,et al.  Dislocation mobility in gum metal β-titanium alloy studied via in situ transmission electron microscopy , 2011 .

[38]  S. Nemat-Nasser,et al.  Experimentally-based micromechanical modeling of dynamic response of molybdenum , 1999 .

[39]  W. Curtin New interpretation of the Haasen plot for solute-strengthened alloys , 2010 .

[40]  Yongfeng Lu,et al.  Evolution of deformation mechanisms of Ti-22.4Nb-0.73Ta-2Zr-1.34O alloy during straining , 2010 .

[41]  A. Minor,et al.  The deformation of Gum Metal through in situ compression of nanopillars , 2010 .

[42]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .