Geometric Analysis and Formability of the Cubic A2BX6 Vacancy-Ordered Double Perovskite Structure

A geometric analysis of the cubic A2BX6 structure commonly formed by metal halides is presented. Using the ‘hard sphere’ approximation, where the ions are represented by spheres of a fixed radius, we derive four limiting models that each constrain the distances between constituent ions in different ways. We compare the lattice parameters predicted by these four models with experimental data from the Inorganic Crystal Structure Database (ICSD). For the fluorides, the maintenance of the AX bond length at the sum of the A and X radii gives the best approximation of the lattice parameter, leading to structures with widely separated BX6 octahedra. For the heavier halides, a balance between forming an A site cavity of the correct size, and maintaining suitable anion-anion distances determines the lattice parameter. It is found that in many A2BX6 compounds of heavier halides, the neighbouring octahedra show very significant anion-anion overlap, meaning that the commonly used description of these materials of having isolated BX6 octahedra is misleading. We use the geometric models to derive formability criteria for vacancy ordered double perovskites.

[1]  M. Nazeeruddin,et al.  The Role of Goldschmidt’s Tolerance Factor in the Formation of A 2 BX 6 Double Halide Perovskites and its Optimal Range , 2020, Small Methods.

[2]  G. J. Snyder,et al.  All-inorganic halide perovskites as potential thermoelectric materials: Dynamic cation off-centering induces ultralow thermal conductivity. , 2020, Journal of the American Chemical Society.

[3]  R. Cava,et al.  Understanding the Instability of the Halide Perovskite CsPbI3 through Temperature‐Dependent Structural Analysis , 2020, Advanced materials.

[4]  David J. Singh,et al.  Characterization of rattling in relation to thermal conductivity: Ordered half-Heusler semiconductors , 2020, 2001.08029.

[5]  I. Alade,et al.  Lattice constant prediction of A2XY6 cubic crystals (A = K, Cs, Rb, TI; X = tetravalent cation; Y = F, Cl, Br, I) using computational intelligence approach , 2020, Journal of Applied Physics.

[6]  V. Sidey A simplified empirical model for predicting the lattice parameters of the cubic/pseudocubic perovskites , 2019, Journal of Solid State Chemistry.

[7]  Ashutosh Kumar Singh,et al.  Rattling-Induced Ultra-low Thermal Conductivity Leading to Exceptional Thermoelectric Performance in AgIn5S8. , 2019, ACS applied materials & interfaces.

[8]  R. Palgrave,et al.  Anion Distribution, Structural Distortion, and Symmetry-Driven Optical Band Gap Bowing in Mixed Halide Cs2SnX6 Vacancy Ordered Double Perovskites , 2019, Chemistry of materials : a publication of the American Chemical Society.

[9]  V. Sidey A simplified empirical model for predicting the lattice parameters for the cubic perovskite-related inorganic A2BX6 halides , 2019, Journal of Physics and Chemistry of Solids.

[10]  J. Neilson,et al.  Perspectives and Design Principles of Vacancy-Ordered Double Perovskite Halide Semiconductors , 2019, Chemistry of Materials.

[11]  M. Kanatzidis,et al.  Dynamic Disorder, Band Gap Widening, and Persistent Near-IR Photoluminescence up to At Least 523 K in ASnI3 Perovskites (A = Cs+, CH3NH3+ and NH2–CH═NH2+) , 2018, The Journal of Physical Chemistry C.

[12]  S. Schorr,et al.  What Defines a Perovskite? , 2018, Advanced Energy Materials.

[13]  Juan J. Diaz Leon,et al.  Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency , 2018, Nature Materials.

[14]  J. Neilson,et al.  Tolerance Factor and Cooperative Tilting Effects in Vacancy-Ordered Double Perovskite Halides , 2018 .

[15]  Feliciano Giustino,et al.  The geometric blueprint of perovskites , 2018, Proceedings of the National Academy of Sciences.

[16]  Kai Zhu,et al.  Scalable fabrication of perovskite solar cells , 2018 .

[17]  A. Barker,et al.  Iodine chemistry determines the defect tolerance of lead-halide perovskites , 2018 .

[18]  Christopher J. Bartel,et al.  New tolerance factor to predict the stability of perovskite oxides and halides , 2018, Science Advances.

[19]  J. Neilson,et al.  Anharmonicity and Octahedral Tilting in Hybrid Vacancy-Ordered Double Perovskites , 2017 .

[20]  J. Grossman,et al.  Ultralow thermal conductivity in all-inorganic halide perovskites , 2017, Proceedings of the National Academy of Sciences.

[21]  W. Xie,et al.  Computational Study of Halide Perovskite-Derived A2BX6 Inorganic Compounds: Chemical Trends in Electronic Structure and Structural Stability , 2017, 1706.08674.

[22]  K. Yoshino,et al.  Investigation of Interfacial Charge Transfer in Solution Processed Cs2SnI6 Thin Films , 2017 .

[23]  Li‐Ming Wu Concerted Rattling in CsAg5Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. , 2016 .

[24]  M. Kanatzidis,et al.  Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. , 2016, Angewandte Chemie.

[25]  Bingqiang Cao,et al.  Lead‐free mesoscopic Cs2SnI6 perovskite solar cells using different nanostructured ZnO nanorods as electron transport layers , 2016 .

[26]  J. Neilson,et al.  Defect Tolerance to Intolerance in the Vacancy-Ordered Double Perovskite Semiconductors Cs2SnI6 and Cs2TeI6. , 2016, Journal of the American Chemical Society.

[27]  R. Palgrave,et al.  On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system , 2016, Chemical science.

[28]  D. Mitzi,et al.  Thin-Film Deposition and Characterization of a Sn-Deficient Perovskite Derivative Cs2SnI6 , 2016 .

[29]  T. Kamiya,et al.  Intrinsic defects in a photovoltaic perovskite variant Cs2SnI6. , 2015, Physical chemistry chemical physics : PCCP.

[30]  Tobin J Marks,et al.  Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor. , 2014, Journal of the American Chemical Society.

[31]  M. Grätzel,et al.  Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2013, Science.

[32]  I. Kityk,et al.  Modeling of lattice constant and their relations with ionic radii and electronegativity of constituting ions of A2XY6 cubic crystals (A=K, Cs, Rb, Tl; X=tetravalent cation, Y=F, Cl, Br, I) , 2011 .

[33]  Xionggang Lu,et al.  Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. , 2008, Acta crystallographica. Section B, Structural science.

[34]  Chonghe Li,et al.  Formability of ABO3 perovskites , 2004 .

[35]  A. Solomon,et al.  X-ray powder diffraction studies of Tl2TeBr6 and Tl2TeI6 , 2004 .

[36]  Y.-Q. Zheng,et al.  Crystal structure of dicaesium hexachlorotungstate(IV), Cs2[WCl6] , 2003 .

[37]  Rustum Roy,et al.  The perovskite structure – a review of its role in ceramic science and technology , 2000 .

[38]  O. Sankey,et al.  Chemical trends of the rattling phonon modes in alloyed germanium clathrates , 2000 .

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[41]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[42]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[43]  P. Blöchl Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[44]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[45]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[46]  B. Krebs,et al.  Kristallstruktur des Tellurtetrajodids TeJ4 , 1976 .

[47]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[48]  I. Brown THE CRYSTAL STRUCTURE OF K2TeBr6 , 1964 .

[49]  A. Newkirk,et al.  Chlorogermanic Acid and the Chlorogermanates. Properties and Crystal Structure of Cesium Hexachlorogermanate , 1940 .

[50]  D. Scanlon,et al.  Beyond methylammonium lead iodide: prospects for the emergent field of ns2 containing solar absorbers. , 2016, Chemical communications.

[51]  Elsevier Sdol Journal of Solid State Chemistry , 2009 .

[52]  J. Greve,et al.  Abstracts of papers , 2005, Pharmaceutisch Weekblad.

[53]  R. D. Shannon,et al.  Effect of covalence on interatomic distances in Cu+, Ag+, Tl+ and Pb2+ halides and chalcogenides , 1976 .

[54]  S. Suib,et al.  SINGLE-CRYSTAL PREPARATION AND PROPERTIES OF CONDUCTING CS2SNI6 , 1975 .

[55]  G. Engel Die Kristallstrukturen einiger Hexachlorokomplexsalze , 1935 .

[56]  John H. Northrop PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES. , 1917, Science.