A uniqueness result for a semilinear elliptic problem: A computer-assisted proof

Abstract Starting with the famous article [A. Gidas, W.M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979) 209–243], many papers have been devoted to the uniqueness question for positive solutions of − Δ u = λ u + u p in Ω, u = 0 on ∂Ω, where p > 1 and λ ranges between 0 and the first Dirichlet eigenvalue λ 1 ( Ω ) of −Δ. For the case when Ω is a ball, uniqueness could be proved, mainly by ODE techniques. But very little is known when Ω is not a ball, and then only for λ = 0 . In this article, we prove uniqueness, for all λ ∈ [ 0 , λ 1 ( Ω ) ) , in the case Ω = ( 0 , 1 ) 2 and p = 2 . This constitutes the first positive answer to the uniqueness question in a domain different from a ball. Our proof makes heavy use of computer assistance: we compute a branch of approximate solutions and prove existence of a true solution branch close to it, using fixed point techniques. By eigenvalue enclosure methods, and an additional analytical argument for λ close to λ 1 ( Ω ) , we deduce the non-degeneracy of all solutions along this branch, whence uniqueness follows from the known bifurcation structure of the problem.

[1]  Adimurthi,et al.  An elementary proof of the uniqueness of positive radial solutions of a quasilinear Dirichlet problem , 1994 .

[2]  G. Corliss,et al.  C-Xsc: A C++ Class Library for Extended Scientific Computing , 1993 .

[3]  zhang Liqua,et al.  Uniqueness Of Positive Solutions Of In A Ball , 1992 .

[4]  Michael Plum,et al.  Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof , 2000 .

[5]  Takashi Suzuki Global analysis for a two-dimensional elliptic eigenvalue problem with the exponential nonlinearity , 1992 .

[6]  R. Nussbaum,et al.  Uniqueness and nonuniqueness for positive radial solutions of Δu+f(u,r)=0 , 1985 .

[7]  Paul H. Rabinowitz,et al.  Some global results for nonlinear eigenvalue problems , 1971 .

[8]  Michael G. Crandall,et al.  Bifurcation, perturbation of simple eigenvalues, itand linearized stability , 1973 .

[9]  F. Pacella,et al.  Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle , 1999 .

[10]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[11]  K. Rektorys Variational Methods in Mathematics, Science and Engineering , 1977 .

[12]  Changshou Lin Uniqueness of least energy solutions to a semilinear elliptic equation in ℝ2 , 1994 .

[13]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[14]  N. Lehmann Optimale Eigenwerteinschließungen , 1963 .

[15]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[16]  Solutions of Semilinear Problems in Symmetric Planar Domains — ODE Behavior and Uniqueness of Branches , 2003 .

[17]  Michael Plum,et al.  Explicit H2-estimates and pointwise bounds for solutions of second-order elliptic boundary value problems , 1992 .

[18]  M. Plum,et al.  New solutions of the Gelfand problem , 2002 .

[19]  M. Grossi A uniqueness result for a semilinear elliptic equation in symmetric domains , 2000, Advances in Differential Equations.

[20]  M. Crandall,et al.  Bifurcation from simple eigenvalues , 1971 .

[21]  H. Behnke,et al.  Inclusion of eigenvalues of general eigenvalue problems for matrices , 1988 .

[22]  Haim Brezis,et al.  Sublinear elliptic equations in ℝn , 1992 .

[23]  P. J. McKenna,et al.  A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam , 2006 .

[24]  Don Hinton Spectral Theory & Computational Methods of Sturm-Liouville Problems , 1997 .

[25]  A. Aftalion,et al.  Uniqueness and nondegeneracy for some nonlinear elliptic problems in a ball , 2003 .