The Mechanism of Ca2+-Dependent Regulation of Kinesin-Mediated Mitochondrial Motility

[1]  L. Hsieh‐Wilson,et al.  The chemical neurobiology of carbohydrates. , 2008, Chemical reviews.

[2]  Cuiling Li,et al.  Docking of Axonal Mitochondria by Syntaphilin Controls Their Mobility and Affects Short-Term Facilitation , 2008, Cell.

[3]  I. Boldogh,et al.  Mitochondria on the move. , 2007, Trends in cell biology.

[4]  S. Gross,et al.  Cargo Transport: Two Motors Are Sometimes Better Than One , 2007, Current Biology.

[5]  J. Swanson,et al.  Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells , 2007, The Journal of cell biology.

[6]  M. Beal Mitochondria and neurodegeneration. , 2007, Novartis Foundation symposium.

[7]  Dawen Cai,et al.  Microtubule Acetylation Promotes Kinesin-1 Binding and Transport , 2006, Current Biology.

[8]  K. Pozo,et al.  Mapping the GRIF-1 Binding Domain of the Kinesin, KIF5C, Substantiates a Role for GRIF-1 as an Adaptor Protein in the Anterograde Trafficking of Cargoes* , 2006, Journal of Biological Chemistry.

[9]  A. Spradling,et al.  Milton controls the early acquisition of mitochondria by Drosophila oocytes , 2006, Development.

[10]  D. Chan,et al.  Critical dependence of neurons on mitochondrial dynamics. , 2006, Current opinion in cell biology.

[11]  I. Reynolds,et al.  Mitochondrial Trafficking to Synapses in Cultured Primary Cortical Neurons , 2006, The Journal of Neuroscience.

[12]  A. Ruusala,et al.  The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. , 2006, Biochemical and biophysical research communications.

[13]  T. Schwarz,et al.  Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent , 2006, The Journal of cell biology.

[14]  R. Rizzuto,et al.  Mitochondrial dynamics and Ca2+ signaling. , 2006, Biochimica et biophysica acta.

[15]  C. Lively,et al.  Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. , 2006, Molecular biology of the cell.

[16]  Tony Pawson,et al.  Modification of the Creator recombination system for proteomics applications – improved expression by addition of splice sites , 2006, BMC biotechnology.

[17]  G. Woehlke,et al.  Review: regulation mechanisms of Kinesin-1 , 2006, Journal of Muscle Research & Cell Motility.

[18]  M. Charlton,et al.  The GTPase dMiro Is Required for Axonal Transport of Mitochondria to Drosophila Synapses , 2005, Neuron.

[19]  P. Verstreken,et al.  Synaptic Mitochondria Are Critical for Mobilization of Reserve Pool Vesicles at Drosophila Neuromuscular Junctions , 2005, Neuron.

[20]  F. Stephenson,et al.  GRIF-1 and OIP106, Members of a Novel Gene Family of Coiled-Coil Domain Proteins , 2005, Journal of Biological Chemistry.

[21]  Yasunori Hayashi,et al.  The Importance of Dendritic Mitochondria in the Morphogenesis and Plasticity of Spines and Synapses , 2004, Cell.

[22]  S. Chasserot-Golaz,et al.  Coupling actin and membrane dynamics during calcium-regulated exocytosis: a role for Rho and ARF GTPases. , 2004, Biochimica et biophysica acta.

[23]  G. Hajnóczky,et al.  Control of mitochondrial motility and distribution by the calcium signal , 2004, The Journal of cell biology.

[24]  Rebecca L. Frederick,et al.  Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway , 2004, The Journal of cell biology.

[25]  P. Hollenbeck,et al.  Nerve Growth Factor Signaling Regulates Motility and Docking of Axonal Mitochondria , 2004, Current Biology.

[26]  R. Fletterick,et al.  Crystal Structure of Kinesin Regulated by Ca2+-Calmodulin* , 2004, Journal of Biological Chemistry.

[27]  J. Saras,et al.  Rho GTPases have diverse effects on the organization of the actin filament system. , 2004, The Biochemical journal.

[28]  W. Chazin,et al.  Structures of EF-hand Ca 2+-binding proteins: Diversity in the organization, packing and response to Ca 2+ Binding , 1998, Biometals.

[29]  G. Kress,et al.  Glutamate Decreases Mitochondrial Size and Movement in Primary Forebrain Neurons , 2003, The Journal of Neuroscience.

[30]  G. Hart,et al.  Roles of the Tetratricopeptide Repeat Domain in O-GlcNAc Transferase Targeting and Protein Substrate Specificity* , 2003, Journal of Biological Chemistry.

[31]  P. Hollenbeck,et al.  Mitochondrial movement and positioning in axons: the role of growth factor signaling , 2003, Journal of Experimental Biology.

[32]  A. Ruusala,et al.  Atypical Rho GTPases Have Roles in Mitochondrial Homeostasis and Apoptosis* , 2003, The Journal of Biological Chemistry.

[33]  I. Meinertzhagen,et al.  Axonal Transport of Mitochondria to Synapses Depends on Milton, a Novel Drosophila Protein , 2002, Neuron.

[34]  Seema Sharma,et al.  Identification, Molecular Cloning, and Characterization of a Novel GABAA Receptor-associated Protein, GRIF-1* , 2002, The Journal of Biological Chemistry.

[35]  K. Homma,et al.  Ca2+-dependent Regulation of the Motor Activity of Myosin V* , 2000, The Journal of Biological Chemistry.

[36]  D. Steele,et al.  Effects of cytosolic ATP on spontaneous and triggered Ca2+‐induced Ca2+ release in permeabilised rat ventricular myocytes , 2000, The Journal of physiology.

[37]  T. Rapoport,et al.  Light Chain– dependent Regulation of Kinesin's Interaction with Microtubules , 1998, Journal of Cell Biology.

[38]  N. Hirokawa,et al.  Targeted Disruption of Mouse Conventional Kinesin Heavy Chain kif5B, Results in Abnormal Perinuclear Clustering of Mitochondria , 1998, Cell.

[39]  A. Reddy,et al.  Ca2+/calmodulin regulation of the Arabidopsis kinesin-like calmodulin-binding protein. , 1998, Cell motility and the cytoskeleton.

[40]  W. Saxton,et al.  Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila. , 1996, Genetics.

[41]  C. Overly,et al.  Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons. , 1996, Journal of cell science.

[42]  P. Hollenbeck,et al.  Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons , 1995, The Journal of cell biology.

[43]  T. Stossel,et al.  Gelsolin inhibition of fast axonal transport indicates a requirement for actin microfilaments , 1984, Nature.