ParaMol: A Package for Parametrization of Molecular Mechanics Force Fields

The ensemble of structures generated by molecular mechanics (MM) simulations is determined by the functional form of the force field employed and its parametrization. For a given functional form, the quality of the parametrization is crucial and will determine how accurately we can compute observable properties from simulations. Whilst accurate force field parametrizations are available for biomolecules, such as proteins or DNA, the parametrization of new molecules, such as drug candidates, is particularly challenging as these may involve functional groups and interactions for which accurate parameters may not be available. Here, in an effort to address this problem, we present ParaMol, a Python package that has a special focus on the parametrization of bonded and non-bonded terms of drug-like molecules by fitting to ab initio data. We demonstrate the software by deriving bonded terms’ parameters of three widelyknown drug molecules: aspirin, caffeine, and a norfloxacin analog, for which we show

[1]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[2]  Alice E. A. Allen,et al.  The ONETEP linear-scaling density functional theory program. , 2020, The Journal of chemical physics.

[3]  R J Maurer,et al.  DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. , 2020, The Journal of chemical physics.

[4]  Krista S. Walton,et al.  Design, Parameterization, and Implementation of Atomic Force Fields for Adsorption in Nanoporous Materials , 2019, Advanced Theory and Simulations.

[5]  Timothy J. Giese,et al.  Development of a Robust Indirect Approach for MM→QM Free Energy Calculations that Combines Force-matched Reference Potential and Bennett's Acceptance Ratio Methods. , 2019, Journal of chemical theory and computation.

[6]  A. Troisi,et al.  Developing Consistent Molecular Dynamics Force Fields for Biological Chromophores via Force Matching. , 2019, The journal of physical chemistry. B.

[7]  H Lee Woodcock,et al.  Accelerating QM/MM Free Energy Computations via Intramolecular Force Matching. , 2018, Journal of chemical theory and computation.

[8]  Bernard R. Brooks,et al.  Force matching as a stepping stone to QM/MM CB[8] host/guest binding free energies: a SAMPL6 cautionary tale , 2018, Journal of Computer-Aided Molecular Design.

[9]  Richard H. Henchman,et al.  Biomolecular simulations: From dynamics and mechanisms to computational assays of biological activity , 2018, WIREs Computational Molecular Science.

[10]  Mark S. Gordon,et al.  Perspective: Ab initio force field methods derived from quantum mechanics , 2018 .

[11]  Michael Walter,et al.  The atomic simulation environment-a Python library for working with atoms. , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  Xiao Wang,et al.  Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. , 2017, Journal of chemical theory and computation.

[13]  Kyle A. Beauchamp,et al.  Building a More Predictive Protein Force Field: A Systematic and Reproducible Route to AMBER-FB15. , 2017, The journal of physical chemistry. B.

[14]  Vijay S. Pande,et al.  OpenMM 7: Rapid development of high performance algorithms for molecular dynamics , 2016, bioRxiv.

[15]  Chris-Kriton Skylaris,et al.  Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package. , 2016, The Journal of chemical physics.

[16]  I. Bruno,et al.  The Cambridge Structural Database , 2016, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[17]  Jennifer L. Knight,et al.  OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. , 2016, Journal of chemical theory and computation.

[18]  C. Adamo,et al.  Benchmarking Density Functionals on Structural Parameters of Small-/Medium-Sized Organic Molecules. , 2016, Journal of chemical theory and computation.

[19]  A. Troisi,et al.  Developing accurate molecular mechanics force fields for conjugated molecular systems. , 2015, Physical chemistry chemical physics : PCCP.

[20]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[21]  Alexander D. MacKerell,et al.  Robustness in the fitting of molecular mechanics parameters , 2015, J. Comput. Chem..

[22]  Alexander D. MacKerell,et al.  CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. , 2015, Biochimica et biophysica acta.

[23]  Ross C. Walker,et al.  Paramfit: Automated optimization of force field parameters for molecular dynamics simulations , 2015, J. Comput. Chem..

[24]  Paul W. Ayers,et al.  Efficient parameterization of torsional terms for force fields , 2014, J. Comput. Chem..

[25]  Adrian E. Roitberg,et al.  Fitting of Dihedral Terms in Classical Force Fields as an Analytic Linear Least-Squares Problem , 2014, J. Chem. Inf. Model..

[26]  Vijay S Pande,et al.  Building Force Fields: An Automatic, Systematic, and Reproducible Approach. , 2014, The journal of physical chemistry letters.

[27]  I. Tavernelli,et al.  Generalized QM/MM Force Matching Approach Applied to the 11-cis Protonated Schiff Base Chromophore of Rhodopsin. , 2014, Journal of chemical theory and computation.

[28]  Klaus Schulten,et al.  Rapid parameterization of small molecules using the force field toolkit , 2013, J. Comput. Chem..

[29]  Benoît Roux,et al.  AUTOMATED FORCE FIELD PARAMETERIZATION FOR NON-POLARIZABLE AND POLARIZABLE ATOMIC MODELS BASED ON AB INITIO TARGET DATA. , 2013, Journal of chemical theory and computation.

[30]  Stefano de Gironcoli,et al.  Nonlocal van der Waals density functional made simple and efficient , 2013 .

[31]  Jiahao Chen,et al.  Systematic Parametrization of Polarizable Force Fields from Quantum Chemistry Data. , 2013, Journal of chemical theory and computation.

[32]  D. Barends,et al.  Biowaiver monograph for immediate-release solid oral dosage forms: acetylsalicylic acid. , 2012, Journal of pharmaceutical sciences.

[33]  S. Grimme,et al.  Performance of the van der Waals Density Functional VV10 and (hybrid)GGA Variants for Thermochemistry and Noncovalent Interactions. , 2011, Journal of chemical theory and computation.

[34]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole-based Molecular Mechanics for Organic Molecules. , 2011, Journal of chemical theory and computation.

[35]  J. Šponer,et al.  Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles , 2011, Journal of chemical theory and computation.

[36]  B. Berne,et al.  Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). , 2011, The journal of physical chemistry. B.

[37]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[38]  Lee‐Ping Wang,et al.  Communication: Hybrid ensembles for improved force matching. , 2010, The Journal of chemical physics.

[39]  Troy Van Voorhis,et al.  Nonlocal van der Waals density functional: the simpler the better. , 2010, The Journal of chemical physics.

[40]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[41]  W. Sherman,et al.  Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. , 2010, Journal of chemical theory and computation.

[42]  Margaret E. Johnson,et al.  Current status of the AMOEBA polarizable force field. , 2010, The journal of physical chemistry. B.

[43]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[44]  Alexander D. MacKerell,et al.  Automated conformational energy fitting for force-field development , 2008, Journal of molecular modeling.

[45]  M. Parrinello,et al.  Well-tempered metadynamics: a smoothly converging and tunable free-energy method. , 2008, Physical review letters.

[46]  T. Frauenheim,et al.  DFTB+, a sparse matrix-based implementation of the DFTB method. , 2007, The journal of physical chemistry. A.

[47]  M. Elstner The SCC-DFTB method and its application to biological systems , 2006 .

[48]  Chris-Kriton Skylaris,et al.  Introducing ONETEP: linear-scaling density functional simulations on parallel computers. , 2005, The Journal of chemical physics.

[49]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[50]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[51]  Charles L. Brooks,et al.  CHARMM fluctuating charge force field for proteins: I parameterization and application to bulk organic liquid simulations , 2004, J. Comput. Chem..

[52]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Koji Ando,et al.  A stable fluctuating-charge polarizable model for molecular dynamics simulations: Application to aqueous electron transfers , 2001 .

[54]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[55]  Thomas Frauenheim,et al.  Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .

[56]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[57]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[58]  Bruce J. Berne,et al.  Dynamical Fluctuating Charge Force Fields: The Aqueous Solvation of Amides , 1996 .

[59]  K. Hukushima,et al.  Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.

[60]  B. Berne,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994, chem-ph/9406002.

[61]  Ming-Jing Hwang,et al.  Derivation of class II force fields. I. Methodology and quantum force field for the alkyl functional group and alkane molecules , 1994, J. Comput. Chem..

[62]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[63]  J. B. Adams,et al.  Interatomic Potentials from First-Principles Calculations: The Force-Matching Method , 1993, cond-mat/9306054.

[64]  Jonathan W. Essex,et al.  Atomic charges for variable molecular conformations , 1992 .

[65]  P. Kollman,et al.  Atomic charges derived from semiempirical methods , 1990 .

[66]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 3. The van der Waals' potentials and crystal data for aliphatic and aromatic hydrocarbons , 1989 .

[67]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[68]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[69]  Wang,et al.  Replica Monte Carlo simulation of spin glasses. , 1986, Physical review letters.

[70]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[71]  An Introduction To Hydrogen Bonding Topics In Physical Chemistry , 2021 .

[72]  D. Gleich TRUST REGION METHODS , 2017 .

[73]  Léon Bottou,et al.  Large-Scale Machine Learning with Stochastic Gradient Descent , 2010, COMPSTAT.

[74]  M. Powell A View of Algorithms for Optimization without Derivatives 1 , 2007 .

[75]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[76]  S. Jónsdóttir,et al.  The consistent force field. Part 6: an optimized set of potential energy functions for primary amines , 2000 .