A fast lattice Green's function method for solving viscous incompressible flows on unbounded domains

A computationally efficient method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. The method formally discretizes the incompressible Navier-Stokes equations on an unbounded staggered Cartesian grid. Operations are limited to a finite computational domain through a lattice Green's function technique. This technique obtains solutions to inhomogeneous difference equations through the discrete convolution of source terms with the fundamental solutions of the discrete operators. The differential algebraic equations describing the temporal evolution of the discrete momentum equation and incompressibility constraint are numerically solved by combining an integrating factor technique for the viscous term and a half-explicit Runge-Kutta scheme for the convective term. A projection method that exploits the mimetic and commutativity properties of the discrete operators is used to efficiently solve the system of equations that arises in each stage of the time integration scheme. Linear complexity, fast computation rates, and parallel scalability are achieved using recently developed fast multipole methods for difference equations. The accuracy and physical fidelity of solutions are verified through numerical simulations of vortex rings.

[1]  Tee Tai Lim,et al.  Leapfrogging of multiple coaxial viscous vortex rings , 2015 .

[2]  R. Nicolaides,et al.  Covolume Solutions of Three-Dimensional Div-Curl Equations , 1997 .

[3]  T. Colonius,et al.  A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions , 2008 .

[4]  Grégoire Winckelmans,et al.  Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations , 2008, J. Comput. Phys..

[5]  Per-Gunnar Martinsson,et al.  Fast and accurate numerical methods for solving elliptic difference equations defined on lattices , 2010, J. Comput. Phys..

[6]  P. Moin,et al.  Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow , 1998 .

[7]  Suchuan Dong,et al.  A robust and accurate outflow boundary condition for incompressible flow simulations on severely-truncated unbounded domains , 2014, J. Comput. Phys..

[8]  Barry Koren,et al.  Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations , 2012, J. Comput. Phys..

[9]  A. Leonard Vortex methods for flow simulation , 1980 .

[10]  Tim Colonius,et al.  A parallel fast multipole method for elliptic difference equations , 2014, J. Comput. Phys..

[11]  R. J. Duffin,et al.  Difference equations of polyharmonic type , 1958 .

[12]  O. Buneman Analytic inversion of the five-point poisson operator , 1971 .

[13]  J. B. Perot,et al.  An analysis of the fractional step method , 1993 .

[14]  A numerical study of viscous vortex rings using a spectral method , 1988 .

[15]  W. Mccrea,et al.  XXII.—Random Paths in Two and Three Dimensions. , 1940 .

[16]  Petros Koumoutsakos,et al.  A Fourier-based elliptic solver for vortical flows with periodic and unbounded directions , 2010, J. Comput. Phys..

[17]  R. Nicolaides Direct discretization of planar div-curl problems , 1992 .

[18]  R. Wood,et al.  Vortex Rings , 1901, Nature.

[19]  Georges-Henri Cottet,et al.  A multiresolution remeshed Vortex-In-Cell algorithm using patches , 2011, J. Comput. Phys..

[20]  D. Schmidt,et al.  Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics , 2002 .

[21]  H. K. Moffatt,et al.  Motion and expansion of a viscous vortex ring. Part 1. A higher-order asymptotic formula for the velocity , 2000, Journal of Fluid Mechanics.

[22]  G. Winckelmans,et al.  Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry , 2000 .

[23]  Y. Fukumoto,et al.  Global time evolution of viscous vortex rings , 2009 .

[24]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[25]  Michael Bergdorf,et al.  Direct numerical simulations of vortex rings at ReΓ = 7500 , 2007, Journal of Fluid Mechanics.

[26]  Grégoire Winckelmans,et al.  Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows , 1993 .

[27]  J. Blair Perot,et al.  Discrete Conservation Properties of Unstructured Mesh Schemes , 2011 .

[28]  Per-Gunnar Martinsson,et al.  Asymptotic expansions of lattice Green's functions , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  Douglas K. Lilly,et al.  ON THE COMPUTATIONAL STABILITY OF NUMERICAL SOLUTIONS OF TIME-DEPENDENT NON-LINEAR GEOPHYSICAL FLUID DYNAMICS PROBLEMS , 1965 .

[30]  Michael S. Warren,et al.  A parallel hashed oct-tree N-body algorithm , 1993, Supercomputing '93. Proceedings.

[31]  B. Perot Conservation Properties of Unstructured Staggered Mesh Schemes , 2000 .

[32]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[33]  Per-Gunnar Martinsson,et al.  A fast solver for Poisson problems on infinite regular lattices , 2011, J. Comput. Appl. Math..

[34]  Kenneth J. Ruschak,et al.  MODELING ARTIFICIAL BOUNDARY CONDITIONS FOR COMPRESSIBLE FLOW , 2005 .

[35]  G. Pedrizzetti,et al.  Vortex Dynamics , 2011 .

[36]  H. K. Moffatt,et al.  Helicity in Laminar and Turbulent Flow , 1992 .

[37]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[38]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[39]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[40]  Diogo Bolster,et al.  Dynamics of thin vortex rings , 2008, Journal of Fluid Mechanics.

[41]  E. Hairer,et al.  Half-explicit Runge-Kutta methods for differential-algebraic systems of index 2 , 1993 .

[42]  Fazle Hussain,et al.  Effects of boundary condition in numerical simulations of vortex dynamics , 2004, Journal of Fluid Mechanics.

[43]  Philippe Chatelain,et al.  A high order solver for the unbounded Poisson equation , 2013, J. Comput. Phys..

[44]  Stefan Turek,et al.  Efficient Solvers for Incompressible Flow Problems - An Algorithmic and Computational Approach , 1999, Lecture Notes in Computational Science and Engineering.

[45]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[46]  Christopher R. Anderson,et al.  On Vortex Methods , 1985 .

[47]  D. Zorin,et al.  A kernel-independent adaptive fast multipole algorithm in two and three dimensions , 2004 .

[48]  G. N. Coleman,et al.  Direct numerical simulation of vortex ring evolution from the laminar to the early turbulent regime , 2008, Journal of Fluid Mechanics.

[49]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[50]  P. Saffman,et al.  The Velocity of Viscous Vortex Rings , 1970 .

[51]  S. Tsynkov Numerical solution of problems on unbounded domains. a review , 1998 .

[52]  Ernst Hairer,et al.  The numerical solution of differential-algebraic systems by Runge-Kutta methods , 1989 .

[53]  F. Giraldo,et al.  Analysis of an Exact Fractional Step Method , 2002 .

[54]  Parviz Moin,et al.  An improvement of fractional step methods for the incompressible Navier-Stokes equations , 1991 .

[55]  Paolo Orlandi,et al.  A numerical study of three-dimensional vortex ring instabilities: viscous corrections and early nonlinear stage , 1994, Journal of Fluid Mechanics.