A review of earth abundant ZnO-based materials for thermoelectric and photovoltaic applications

Zinc oxide (ZnO) is an earth abundant wide bandgap semiconductor of great interest in the recent years. ZnO has many unique properties, such as non-toxic, large direct bandgap, high exciton binding energy, high transparency in visible and infrared spectrum, large Seebeck coefficient, high thermal stability, high electron diffusivity, high electron mobility, and availability of various nanostructures, making it a promising material for many applications. The growth techniques of ZnO is reviewed in this work, including sputtering, PLD, MOCVD and MBE techniques, focusing on the crystalline quality, electrical and optical properties. The problem with p-type doping ZnO is also discussed, and the method to improve p-type doping efficiency is reviewed. This paper also summarizes the current state of art of ZnO in thermoelectric and photovoltaic applications, including the key parameters, different device structures, and future development.

[1]  Xinhua Pan,et al.  Realization of Na-doped p-type non-polar a-plane Zn1−xCdxO films by pulsed laser deposition , 2014 .

[2]  Xuchun Gui,et al.  Phase evolution, bandgap engineering and p-type conduction in undoped/N-doped BexZn1-xO alloy epitaxial films , 2014 .

[3]  J. F. Schetzina,et al.  MBE Growth and Properties of ZnO on Sapphire and SiC Substrates , 1995 .

[4]  E. Guziewicz,et al.  Nitrogen doped p-type ZnO films and p-n homojunction , 2014 .

[5]  Francisco Fabregat-Santiago,et al.  Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[6]  Haiyan Wang,et al.  Highly stable non-polar p-type Ag-doped ZnO thin films grown on r-cut sapphire , 2013 .

[7]  L. P. Purohit,et al.  Sputtered Al–N codoped p-type transparent ZnO thin films suitable for optoelectronic devices , 2016 .

[8]  Zhigang Yin,et al.  Applications of ZnO in organic and hybrid solar cells , 2011 .

[9]  Sang Hyuck Bae,et al.  Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition , 2000 .

[10]  Hui Cai,et al.  Realization of p-type Se–N co-doped ZnO films by radio-frequency magnetron sputtering , 2013 .

[11]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[12]  Bin Yao,et al.  The effect of boron on the doping efficiency of nitrogen in ZnO , 2016 .

[13]  Gerd Keiser,et al.  Fast Photoresponse and Long Lifetime UV Photodetectors and Field Emitters Based on ZnO/Ultrananocrystalline Diamond Films. , 2015, Chemistry.

[14]  Aleksandra Radenovic,et al.  ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. , 2006, The journal of physical chemistry. B.

[15]  C. Ballif,et al.  Transparent Electrodes for Efficient Optoelectronics , 2017 .

[16]  Kazuhiko Tonooka,et al.  Photovoltaic effect observed in transparent p–n heterojunctions based on oxide semiconductors , 2003 .

[17]  Guozhong Cao,et al.  ZnO Nanostructures for Dye‐Sensitized Solar Cells , 2010 .

[18]  Anderson Janotti,et al.  Why nitrogen cannot lead to $p$-type conductivity in ZnO , 2009 .

[19]  W. Paszkowicz,et al.  Extremely low temperature growth of ZnO by atomic layer deposition , 2008 .

[20]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[21]  Jin Young Kim,et al.  Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells , 2015, Nature Communications.

[22]  J. Y. Zhang,et al.  An approach to enhanced acceptor concentration in ZnO:N films , 2010 .

[23]  Ali Dabirian,et al.  Tuning the Optoelectronic Properties of ZnO:Al by Addition of Silica for Light Trapping in High‐Efficiency Crystalline Si Solar Cells , 2016 .

[24]  Christophe Ballif,et al.  Sputtered rear electrode with broadband transparency for perovskite solar cells , 2015 .

[25]  Jiro Temmyo,et al.  Synthesis and characterization of N, In co-doped MgZnO films using remote-plasma-enhanced metalorganic chemical vapor deposition , 2013 .

[26]  Ching-Hwa Ho,et al.  The study of rapid thermal annealing on arsenic-doped ZnO for the p-type ZnO formation , 2013 .

[27]  Yang Li,et al.  Preparation and properties of p-type Ag-doped ZnMgO thin films by pulsed laser deposition , 2012 .

[28]  S. Jokela,et al.  Defects in ZnO , 2009 .

[29]  Shang Gao,et al.  Performance enhancement of ZnO UV photodetectors by surface plasmons. , 2014, ACS applied materials & interfaces.

[30]  Mohamed Salah Aida,et al.  Influence of deposition temperature on structural, optical and electrical properties of sputtered Al doped ZnO thin films , 2012 .

[31]  Soon-Mok Choi,et al.  An enhancement of a thermoelectric power factor in a Ga-doped ZnO system: A chemical compression by enlarged Ga solubility , 2012 .

[32]  H. C. Swart,et al.  Effect of doping concentration on the conductivity and optical properties of p-type ZnO thin films , 2016 .

[33]  Ian T. Ferguson,et al.  Epitaxial Growth and Characterization of p-Type ZnO , 2007 .

[34]  Bin Yao,et al.  The p-type ZnO film realized by a hydrothermal treatment method , 2011 .

[35]  Shulin Gu,et al.  Mutually beneficial doping of tellurium and nitrogen in ZnO films grown by metal-organic chemical vapor deposition , 2012 .

[36]  C. Cavallo,et al.  Nanostructured Semiconductor Materials for Dye-Sensitized Solar Cells , 2017 .

[37]  Li Xiao,et al.  Effects of (P, N) dual acceptor doping on band gap and p-type conduction behavior of ZnO films , 2013 .

[38]  Marius Grundmann,et al.  High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition , 2003 .

[39]  R. Gordon Criteria for Choosing Transparent Conductors , 2000 .

[40]  Christophe Ballif,et al.  Tailoring the surface morphology of zinc oxide films for high-performance micromorph solar cells , 2014 .

[41]  Ching-Hwa Ho,et al.  Characterization of nitrogen doped p-type ZnO thin films prepared by reactive ion beam sputter deposition , 2013 .

[42]  Bernd Rech,et al.  The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells , 2007 .

[43]  Risto M. Nieminen,et al.  Energetics of intrinsic defects and their complexes in ZnO investigated by density functional calculations , 2011 .

[44]  Christophe Ballif,et al.  Low-Temperature High-Mobility Amorphous IZO for Silicon Heterojunction Solar Cells , 2015, IEEE Journal of Photovoltaics.

[45]  Ying Wang,et al.  Preparation of p-type ZnO film on the GaAs substrate by thermal annealing treatment , 2013 .

[46]  Takafumi Suzuki,et al.  High-quality ZnO films prepared on Si wafers by low-pressure MO-CVD , 2003 .

[47]  Kakuya Iwata,et al.  ZnO growth on Si by radical source MBE , 2000 .

[48]  Cheng Xu,et al.  Low temperature processed ZnO thin film as electron transport layer for efficient perovskite solar cells , 2017 .

[49]  Shisheng Lin,et al.  Robust low resistivity p-type ZnO:Na films after ultraviolet illumination: The elimination of grain boundaries , 2012 .

[50]  Kee-Joo Chang,et al.  Compensation mechanism for N acceptors in ZnO , 2001 .

[51]  Shulin Gu,et al.  Tellurium assisted realization of p-type N-doped ZnO , 2010 .

[52]  Sang Yeol Lee,et al.  Effect of the variation of film thickness on the structural and optical properties of ZnO thin films deposited on sapphire substrate using PLD , 2002 .

[53]  Parag A. Deshpande,et al.  Nanoscale ZnO/CdS heterostructures with engineered interfaces for high photocatalytic activity under solar radiation , 2011 .

[54]  Ashraf Uddin,et al.  Organic - Inorganic Hybrid Solar Cells: A Comparative Review , 2012 .

[55]  E. Fortunato,et al.  Transparent Conducting Oxides for Photovoltaics , 2007 .

[56]  Giorgio Sberveglieri,et al.  Hierarchically assembled ZnO nanocrystallites for high-efficiency dye-sensitized solar cells. , 2011, Angewandte Chemie.

[57]  Seunghoon Nam,et al.  Optical and electronic properties of post-annealed ZnO:Al thin films , 2010 .

[58]  Shiro Nishiwaki,et al.  Highly Transparent and Conductive ZnO: Al Thin Films from a Low Temperature Aqueous Solution Approach , 2014, Advanced materials.

[59]  Yicheng Lu,et al.  Selective MOCVD growth of ZnO nanotips , 2003 .

[60]  Arzhang Ardavan,et al.  Surface acoustic wave devices on bulk ZnO at low temperature , 2014, 1411.5916.

[61]  Rajesh Kumar,et al.  Zinc oxide nanostructure-based dye-sensitized solar cells , 2017, Journal of Materials Science.

[62]  Kun Ho Kim,et al.  Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering , 1997 .

[63]  Nam-Gyu Park,et al.  Effects of Seed Layer on Growth of ZnO Nanorod and Performance of Perovskite Solar Cell , 2015 .

[64]  Lin-Wang Wang,et al.  Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications. , 2007, Nano letters.

[65]  Can Wang,et al.  Pulsed laser deposition of Li–N dual acceptor in p-ZnO:(Li, N) thin film and the p-ZnO:(Li, N)/n-ZnO homojunctions on Si(100) , 2014 .

[66]  Aleksandra B. Djurišić,et al.  ZnO nanostructures: growth, properties and applications , 2012 .

[67]  Shinzo Takata,et al.  Group III Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering , 1985 .

[68]  H. Colder,et al.  Preparation of Ni-doped ZnO ceramics for thermoelectric applications , 2011 .

[69]  Margaret A. K. Ryan,et al.  CdSe‐Sensitized p‐CuSCN/Nanowire n‐ZnO Heterojunctions , 2005 .

[70]  E. Aydil,et al.  Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. , 2009, ACS nano.

[71]  Yuki Nishi,et al.  The impact of heterojunction formation temperature on obtainable conversion efficiency in n-ZnO/p-Cu2O solar cells , 2013 .

[72]  Yuan Zhang,et al.  Optical and microstructural properties of ZnO/TiO2 nanolaminates prepared by atomic layer deposition , 2013, Nanoscale Research Letters.

[73]  Christophe Ballif,et al.  Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells , 2016 .

[74]  C. Ballif,et al.  Record Infrared Internal Quantum Efficiency in Silicon Heterojunction Solar Cells With Dielectric/Metal Rear Reflectors , 2013, IEEE Journal of Photovoltaics.

[75]  Na Lu,et al.  ZnO for solar cell and thermoelectric applications , 2017, OPTO.

[76]  Anderson Janotti,et al.  Fundamentals of zinc oxide as a semiconductor , 2009 .

[77]  Frank Säuberlich,et al.  Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment , 2010, Materials.

[78]  Zhuang-hao Zheng,et al.  Low-cost flexible thin film thermoelectric generator on zinc based thermoelectric materials , 2015 .

[79]  Haiping He,et al.  Preparation of Na delta-doped p-type ZnO thin films by pulsed laser deposition using NaF and ZnO ceramic targets , 2013 .

[80]  Kian Ping Loh,et al.  Stable p-Type Doping of ZnO Film in Aqueous Solution at Low Temperatures , 2010 .

[81]  Nada El-Zein,et al.  Metal-organic chemical vapor deposition of ZnO , 2006 .

[82]  Min-Koo Han,et al.  Effects of ITO precursor thickness on transparent conductive Al doped ZnO film for solar cell applications , 2011 .

[83]  Baolin Zhang,et al.  Growth and conduction mechanism of As-doped p-type ZnO thin films deposited by MOCVD , 2013 .

[84]  Rui Zhu,et al.  Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. , 2014, ACS nano.

[85]  Hang Zang,et al.  Fabrication and properties of Al–P codoped p-type zinc oxide films by RF magnetron sputtering , 2015 .

[86]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[87]  Won Seok Choi,et al.  The effect of annealing on Al-doped ZnO films deposited by RF magnetron sputtering method for transparent electrodes , 2010 .

[88]  Ian Ferguson,et al.  Zinc oxide and silicon based heterojunction solar cell model , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[89]  Takafumi Yao,et al.  High-Quality p-Type ZnO Films Grown by Co-Doping of N and Te on Zn-Face ZnO Substrates , 2010 .

[90]  Arvind Shah,et al.  Rough ZnO Layers by LP-CVD Process and their Effect in Improving Performances of Amorphous and Microcrystalline Silicon Solar Cells , 2006 .

[91]  M. Beard,et al.  Comparing the Fundamental Physics and Device Performance of Transparent, Conductive Nanostructured Networks with Conventional Transparent Conducting Oxides , 2012 .

[92]  Suhuai Wei,et al.  Origin of p -type doping difficulty in ZnO: The impurity perspective , 2002 .

[93]  Kuo-Chuan Ho,et al.  Zinc oxide based dye-sensitized solar cells: A review , 2017 .

[94]  M. Ara,et al.  Characterization and doping effects study of high hole concentration Li-doped ZnO thin film prepared by sol–gel method , 2016, Journal of Materials Science: Materials in Electronics.

[95]  Charles W. Tu,et al.  Structural and electrical properties of phosphorous-doped p-type ZnSxO1−x film grown by co-sputtering , 2014 .

[96]  R. Kumar,et al.  Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review , 2014, Nano-Micro Letters.

[97]  Makoto Konagai,et al.  Atomic layer deposition of ZnO transparent conducting oxides , 1997 .

[98]  Guoping Qin,et al.  p-Type conductivity and stability of Ag–N codoped ZnO thin films , 2014 .

[99]  Christophe Ballif,et al.  Increasing Polycrystalline Zinc Oxide Grain Size by Control of Film Preferential Orientation , 2015 .