Isotropic Shearlet Analogs for L 2(ℝ k ) and Localization Operators

In this article we present a new multi-dimensional transformation which contains directional components and which generalizes certain qualities of shearlet transforms. This is achieved by means of exploiting representations of the extended metaplectic group. We study the properties of this new family of isotropic shearlet transformations and of their associated Lie groups, including structural results of the transform spaces. This family yields localization operators which have desirable properties. The Wick symbols for these operators are associated with a well-defined calculus. We also provide simple constructions of families of such reproducing functions. In addition, we analyze an example which shows the uniqueness of this new generalized shearlet transform.

[1]  G. Teschke,et al.  THE CONTINUOUS SHEARLET TRANSFORM IN HIGHER DIMENSIONS : VARIATIONS OF A THEME , 2009 .

[2]  E. Cordero,et al.  Reproducing Groups for the Metaplectic Representation , 2006 .

[3]  Hartmut Führ,et al.  Wavelet frames and admissibility in higher dimensions , 1996 .

[4]  F. D. Mari,et al.  A mock metaplectic representation , 2011, 1109.5533.

[5]  Steven G. Krantz,et al.  Function Theory of One Complex Variable , 2002 .

[6]  Wang-Q Lim,et al.  Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.

[7]  Wang-Q Lim,et al.  Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.

[8]  H. Führ Abstract Harmonic Analysis of Continuous Wavelet Transforms , 2005 .

[9]  L^p boundedness of localization operators associated to left regular representations , 2002 .

[10]  D. Labate,et al.  Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators , 2006 .

[11]  R. Fabec,et al.  The Continuous Wavelet Transform and Symmetric Spaces , 2001 .

[12]  David Bernier,et al.  Wavelets from square-integrable representations , 1996 .

[13]  E. King,et al.  Wavelet and frame theory: frame bound gaps, generalized shearlets, Grassmannian fusion frames, and p-adic wavelets , 2009 .

[14]  E. Cordero,et al.  Dimensional upper bounds for admissible subgroups for the metaplectic representation , 2010 .

[15]  Wojciech Czaja,et al.  Anisotropic shearlet transforms for L2 (Rk) , 2014 .

[16]  G. Easley,et al.  Sparse directional image representations using the discrete shearlet transform , 2008 .

[17]  Gitta Kutyniok,et al.  From Wavelets to Shearlets and back again , 2007 .

[18]  Ziemowit Rzeszotnik Calderon's condition and wavelets , 2001 .

[19]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[20]  Emmanuel J. Candès,et al.  New multiscale transforms, minimum total variation synthesis: applications to edge-preserving image reconstruction , 2002, Signal Process..

[21]  Gitta Kutyniok,et al.  Shearlets: Multiscale Analysis for Multivariate Data , 2012 .

[22]  Demetrio Labate,et al.  Analysis and detection of surface discontinuities using the 3D continuous shearlet transform , 2011 .

[23]  Demetrio Labate,et al.  Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..

[24]  N. Vasilevski On the structure of Bergman and poly-Bergman spaces , 1999 .

[25]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[26]  K. Nowak,et al.  Analytic Features of Reproducing Groups for the Metaplectic Representation , 2006 .

[27]  Filippo De Mari,et al.  Analysis of the affine transformations of the time-frequency plane , 2001, Bulletin of the Australian Mathematical Society.

[28]  Stéphane Mallat,et al.  Bandelet Image Approximation and Compression , 2005, Multiscale Model. Simul..

[29]  D. Donoho Wedgelets: nearly minimax estimation of edges , 1999 .

[30]  Demetrio Labate,et al.  Optimally sparse 3D approximations using shearlet representations , 2010 .

[31]  Jeffrey D. Blanchard Minimally Supported Frequency Composite Dilation Wavelets , 2009 .

[32]  Xiaosheng Zhuang,et al.  ShearLab: A Rational Design of a Digital Parabolic Scaling Algorithm , 2011, SIAM J. Imaging Sci..

[33]  M. W. Wong Wavelet transforms and localization operators , 2002 .

[34]  Demetrio Labate,et al.  Characterization of Piecewise-Smooth Surfaces Using the 3D Continuous Shearlet Transform , 2011, Journal of Fourier Analysis and Applications.

[35]  Hamid Krim,et al.  A Shearlet Approach to Edge Analysis and Detection , 2009, IEEE Transactions on Image Processing.

[36]  Wang-Q Lim,et al.  Compactly Supported Shearlets , 2010, 1009.4359.

[37]  Minh N. Do,et al.  Multidimensional Directional Filter Banks and Surfacelets , 2007, IEEE Transactions on Image Processing.

[38]  Gabriele Steidl,et al.  Shearlet coorbit spaces and associated Banach frames , 2009 .

[39]  Wang-Q Lim,et al.  Wavelets with composite dilations , 2004 .

[40]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[41]  Ingrid Daubechies,et al.  Time-frequency localization operators: A geometric phase space approach , 1988, IEEE Trans. Inf. Theory.

[42]  Laurent Demanet,et al.  Curvelets and wave atoms for mirror-extended images , 2007, SPIE Optical Engineering + Applications.

[43]  Ronald R. Coifman,et al.  Brushlets: A Tool for Directional Image Analysis and Image Compression , 1997 .

[44]  Gitta Kutyniok,et al.  Adaptive Directional Subdivision Schemes and Shearlet Multiresolution Analysis , 2007, SIAM J. Math. Anal..

[45]  O. Hutník On Toeplitz-type Operators Related to Wavelets , 2009 .

[46]  Guido Weiss,et al.  The Mathematical Theory of Wavelets , 2001 .

[47]  Glenn R. Easley,et al.  Radon Transform Inversion using the Shearlet Representation , 2010 .

[48]  Demetrio Labate,et al.  Characterization and Analysis of Edges Using the Continuous Shearlet Transform , 2009, SIAM J. Imaging Sci..

[49]  E. Candès,et al.  Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[50]  Monika Doerfler,et al.  Time-Frequency Partitions and Characterizations of Modulation Spaces with Localization Opertors , 2009, 0912.1945.

[51]  D. Labate,et al.  Resolution of the wavefront set using continuous shearlets , 2006, math/0605375.

[52]  Gabriele Steidl,et al.  The Continuous Shearlet Transform in Arbitrary Space Dimensions , 2009, Structured Decompositions and Efficient Algorithms.