A Rapid, Amplification-Free, and Sensitive Diagnostic Assay for Single-Step Multiplexed Fluorescence Detection of MicroRNA.

The importance of microRNA (miRNA) dysregulation for the development and progression of diseases and the discovery of stable miRNAs in peripheral blood have made these short-sequence nucleic acids next-generation biomarkers. Here we present a fully homogeneous multiplexed miRNA FRET assay that combines careful biophotonic design with various RNA hybridization and ligation steps. The single-step, single-temperature, and amplification-free assay provides a unique combination of performance parameters compared to state-of-the-art miRNA detection technologies. Precise multiplexed quantification of miRNA-20a, -20b, and -21 at concentrations between 0.05 and 0.5 nM in a single 150 μL sample and detection limits between 0.2 and 0.9 nM in 7.5 μL serum samples demonstrate the feasibility of both high-throughput and point-of-care clinical diagnostics.

[1]  He Zhang,et al.  Microfluidic bead-based assay for microRNAs using quantum dots as labels and enzymatic amplification , 2015, Microchimica Acta.

[2]  Jian Wang,et al.  A simple rapid detection method of DNA based on ligation-mediated real-time fluorescence PCR. , 2013, The Analyst.

[3]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[4]  N. G. Butlin,et al.  Quantenpunkt‐Biosensoren für hochempfindliche Multiplexdiagnostik , 2010 .

[5]  Gabriele Sales,et al.  MAGIA2: from miRNA and genes expression data integrative analysis to microRNA–transcription factor mixed regulatory circuits (2012 update) , 2012, Nucleic Acids Res..

[6]  Zhiqiang Gao,et al.  A highly sensitive and selective electrochemical biosensor for direct detection of microRNAs in serum. , 2013, Analytical chemistry.

[7]  M. Rodicio,et al.  Detection methods for microRNAs in clinic practice. , 2013, Clinical biochemistry.

[8]  Suresh Shrestha,et al.  Bioluminescence-based detection of microRNA, miR21 in breast cancer cells. , 2008, Analytical chemistry.

[9]  Hans-Gerd Löhmannsröben,et al.  Six-color time-resolved Förster resonance energy transfer for ultrasensitive multiplexed biosensing. , 2013, Journal of the American Chemical Society.

[10]  M. Rodicio,et al.  Analytical aspects of microRNA in diagnostics: a review. , 2011, Analytica chimica acta.

[11]  Zhengping Li,et al.  Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification. , 2009, Angewandte Chemie.

[12]  L. Castellano,et al.  Towards a clinical use of miRNAs in pancreatic cancer biopsies , 2013, Expert review of molecular diagnostics.

[13]  Jingli Yan,et al.  Ultrasensitive quantification of mature microRNAs by real-time PCR based on ligation of a ribonucleotide-modified DNA probe. , 2011, Chemical communications.

[14]  Caixia Li,et al.  Forensic Identification Using a Multiplex Assay of 47 SNPs * , 2012, Journal of forensic sciences.

[15]  Zhiqiang Gao,et al.  A label-free biosensor for electrochemical detection of femtomolar microRNAs. , 2013, Analytical chemistry.

[16]  Tao Jiang,et al.  Circulating microRNAs in cancer: origin, function and application , 2012, Journal of Experimental & Clinical Cancer Research.

[17]  C. Croce,et al.  MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review , 2012, EMBO molecular medicine.

[18]  G. Bao,et al.  In vitro quantification of specific microRNA using molecular beacons , 2011, Nucleic acids research.

[19]  H. Okamoto,et al.  Typing hepatitis C virus by polymerase chain reaction with type-specific primers: application to clinical surveys and tracing infectious sources. , 1992, The Journal of general virology.

[20]  D. Conrad,et al.  Global variation in copy number in the human genome , 2006, Nature.

[21]  Demin Duan,et al.  Direct microRNA detection with universal tagged probe and time-resolved fluorescence technology. , 2012, Biosensors & bioelectronics.

[22]  Zhiping Weng,et al.  Target RNA–Directed Trimming and Tailing of Small Silencing RNAs , 2010, Science.

[23]  Hans-Gerd Löhmannsröben,et al.  Quantum dot biosensors for ultrasensitive multiplexed diagnostics. , 2010, Angewandte Chemie.

[24]  M. Hofreiter,et al.  Phenotypes from ancient DNA: Approaches, insights and prospects , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[25]  Andrew Tsourkas,et al.  Imaging individual microRNAs in single mammalian cells in situ , 2009, Nucleic acids research.

[26]  Jide Xu,et al.  Octadentate cages of Tb(III) 2-hydroxyisophthalamides: a new standard for luminescent lanthanide labels. , 2011, Journal of the American Chemical Society.

[27]  Itamar Willner,et al.  Diagnosing the miR-141 prostate cancer biomarker using nucleic acid-functionalized CdSe/ZnS QDs and telomerase† †Electronic supplementary information (ESI) available: Optimization of detection conditions and tabulation of data in Fig. 3. See DOI: 10.1039/c4sc02104e1 Click here for additional data fi , 2014, Chemical science.

[28]  George A Calin,et al.  MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. , 2008, JAMA.

[29]  Stefan L Ameres,et al.  Diversifying microRNA sequence and function , 2013, Nature Reviews Molecular Cell Biology.