Energetic nitrogen-rich salts and ionic liquids: 5-aminotetrazole (AT) as a weak acid

5-Aminotetrazole (AT) behaves as a weak acid and can be used to obtain nitrogen-rich energetic salts and ionic liquids. These AT salts have been characterized by IR, NMR, elemental analysis, thermal stability, phase behavior, and density. The salt 2 contains 82% nitrogen, and 7 has the highest nitrogen content (68%) of any known room temperature ionic liquid. Compound 5 crystallizes in the chiral orthorhombic system P2(1)2(1)2(1). Based on their calculated heats of formation, detonation properties, and thermal and hydrolytic stabilities, these stable AT compounds hold promise for energetic applications.

[1]  B. Twamley,et al.  Energetic nitrogen-rich derivatives of 1,5-diaminotetrazole. , 2008, Angewandte Chemie.

[2]  B. Twamley,et al.  The synthesis of di(aminoguanidine) 5-nitroiminotetrazolate: some diprotic or monoprotic acids as precursors of energetic salts. , 2008, Chemistry.

[3]  Georg Steinhauser,et al.  "Green" pyrotechnics: a chemists' challenge. , 2008, Angewandte Chemie.

[4]  A. Vij,et al.  Liquid azide salts. , 2008, Inorganic chemistry.

[5]  T. Klapötke,et al.  Nitrogen-Rich Tetrazolium Azotetrazolate Salts : A New Family of Insensitive Energetic Materials , 2008 .

[6]  J. Welch,et al.  Salts of methylated 5-aminotetrazoles with energetic anions. , 2008, Inorganic chemistry.

[7]  R. Haiges,et al.  The binary selenium(IV) Azides Se(N3)4, [Se(N3)5]-, and [Se(N3)6]2-. , 2007, Angewandte Chemie.

[8]  Marcin Smiglak,et al.  The second evolution of ionic liquids: from solvents and separations to advanced materials--energetic examples from the ionic liquid cookbook. , 2007, Accounts of chemical research.

[9]  T. Klapötke,et al.  Nitration Products of 5‐Amino‐1H‐tetrazole and Methyl‐5‐amino‐1H‐tetrazoles – Structures and Properties of Promising Energetic Materials , 2007 .

[10]  Hongyang Gao,et al.  Energetic Nitrogen Rich Salts of N,N‐bis[1(2)H‐Tetrazol‐5‐yl]amine , 2007 .

[11]  C. Ye,et al.  Computational Characterization of Energetic Salts , 2007 .

[12]  T. Klapötke,et al.  Alkali Salts of 5‐Aminotetrazole – Structures and Properties , 2007 .

[13]  B. Twamley,et al.  Energetic Salts of 3-Nitro-1,2,4-triazole-5-one, 5-Nitroaminotetrazole, and Other Nitro-Substituted Azoles† , 2007 .

[14]  David A Dixon,et al.  Accurate thermochemical properties for energetic materials applications. II. Heats of formation of imidazolium-, 1,2,4-triazolium-, and tetrazolium-based energetic salts from isodesmic and lattice energy calculations. , 2007, The journal of physical chemistry. B.

[15]  C. Ye,et al.  Rapid and accurate estimation of densities of room-temperature ionic liquids and salts. , 2007, The journal of physical chemistry. A.

[16]  T. Rüffer,et al.  The exciting chemistry of tetraazidomethane. , 2007, Angewandte Chemie.

[17]  B. Twamley,et al.  Heterocyclic-based nitrodicyanomethanide and dinitrocyanomethanide salts: a family of new energetic ionic liquids. , 2007, Inorganic chemistry.

[18]  Gregory W. Drake,et al.  A new family of energetic ionic liquids 1-amino-3-alkyl-1,2,3-triazolium nitrates , 2006 .

[19]  R. Haiges,et al.  Oxygen-balanced energetic ionic liquid. , 2006, Angewandte Chemie.

[20]  Ling He,et al.  Preparation, characterization and application of amino acid-based green ionic liquids , 2006 .

[21]  R. D. Verma,et al.  Energetic nitrogen-rich salts and ionic liquids. , 2006, Angewandte Chemie.

[22]  J. Weigand,et al.  BTA copper complexes. , 2005, Inorganic chemistry.

[23]  Q. Li,et al.  Density functional theoretical study of a series of binary azides M(N3)n (n = 3, 4). , 2005, The journal of physical chemistry. A.

[24]  J. Shreeve,et al.  Energetic Ionic Liquids from Azido Derivatives of 1,2,4‐Triazole , 2005 .

[25]  B. Twamley,et al.  Mono and Bridged Azolium Picrates as Energetic Salts , 2005 .

[26]  Michael W. Schmidt,et al.  Triazolium-based energetic ionic liquids. , 2005, The journal of physical chemistry. A.

[27]  N. Sun,et al.  New generation ionic liquids: cations derived from amino acids. , 2005, Chemical communications.

[28]  B. Twamley,et al.  Energetic azolium azolate salts. , 2005, Inorganic chemistry.

[29]  J. Weigand,et al.  Azidoformamidinium and Guanidinium 5,5‘-Azotetrazolate Salts , 2005 .

[30]  J. Welch,et al.  Improved Synthesis and X-Ray Structure of 5-Aminotetrazolium Nitrate , 2005 .

[31]  B. Twamley,et al.  Energetic salts of azotetrazolate, iminobis(5-tetrazolate) and 5, 5'-bis(tetrazolate). , 2005, Chemical communications.

[32]  J. Weigand,et al.  Derivatives of 1,5-diamino-1H-tetrazole: a new family of energetic heterocyclic-based salts. , 2005, Inorganic chemistry.

[33]  B. Twamley,et al.  Guanidinium-based ionic liquids. , 2005, Inorganic chemistry.

[34]  J. Weigand,et al.  1,5-diamino-4-methyltetrazolium dinitramide. , 2005, Journal of the American Chemical Society.

[35]  B. Twamley,et al.  New Energetic Salts Based on Nitrogen-Containing Heterocycles , 2005 .

[36]  R. Haiges,et al.  High-energy-density materials: synthesis and characterization of N5+[P(N3)6]-, N5+[B(N3)4]-, N5+[HF2]-.n HF, N5+[BF4]-, N5+[PF6]-, and N5+[SO3F]-. , 2004, Angewandte Chemie.

[37]  R. Haiges,et al.  Polyazide chemistry: preparation and characterization of Te(N3)4 and [P(C6H5)4]2[Te(N3)6] and evidence for [N(CH3)4][Te(N3)5]. , 2003, Angewandte Chemie.

[38]  W. Schweikert,et al.  Synthesis, Characterization and Thermal Behaviour of Guanidinium‐5‐aminotetrazolate (GA) – A New Nitrogen‐Rich Compound , 2003 .

[39]  A. Vij,et al.  Energetic, Low‐Melting Salts of Simple Heterocycles , 2003 .

[40]  K. Christe,et al.  Polynitrogen chemistry: preparation and characterization of (N5)2SnF6, N5SnF5, and N5B(CF3)4. , 2003, Chemistry.

[41]  Ashwani Vij,et al.  Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N5-**. , 2002, Angewandte Chemie.

[42]  L. Glasser,et al.  Lattice potential energy estimation for complex ionic salts from density measurements. , 2002, Inorganic chemistry.

[43]  G. S. Lee,et al.  A review of energetic materials synthesis , 2002 .

[44]  T. Klapötke,et al.  Tetrazolylpentazoles: nitrogen-rich compounds. , 2002, Inorganic chemistry.

[45]  E. W. Meijer,et al.  A multiple hydrogen-bond scaffold based on dipyrimidin-2-ylamine. , 2001, Organic letters.

[46]  T. Klapötke,et al.  Synthesis and Characterization of Hydrazinium Azide Hydrazinate , 2001 .

[47]  T. Klapötke,et al.  [N2H5]+2[N4C−NN−CN4]2-: A New High-Nitrogen High-Energetic Material , 2001 .

[48]  K. Christe,et al.  Polynitrogen chemistry. Synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N5+. , 2001, Journal of the American Chemical Society.

[49]  T. Klapötke,et al.  Highly energetic tetraazidoborate anion and boron triazide adducts. , 2001, Inorganic chemistry.

[50]  Jerry A. Boatz,et al.  N5 +: A Novel Homoleptic Polynitrogen Ion as a High Energy Density Material. , 1999, Angewandte Chemie.

[51]  P. Eaton,et al.  Polynitrocubanes: Advanced High-Density, High-Energy Materials** , 2000 .

[52]  Gilardi,et al.  Hepta- and Octanitrocubanes. , 2000, Angewandte Chemie.

[53]  Klapötke Homopolyatomic Nitrogen Compounds. , 1999, Angewandte Chemie.

[54]  M. D. Coburn,et al.  Binary eutectics formed between ammonium nitrate and amine salts of 5-nitrotetrazole I. preparation and initial characterization , 1983 .

[55]  R. A. Henry New Compounds. Salts of 5-Aminotetrazole , 1952 .

[56]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[57]  W. Bauer II. Zur Frage der Rohstoffversorgung Deutschlands , 1934 .