Photogenerating work from polymers

The ability to control the creation of mechanical work remotely, with high speed and spatial precision, over long distances, offers many intriguing possibilities. Recent developments in photoresponsive polymers and nanocomposite concepts are at the heart of these future devices. Whether driving direct conformational changes, initiating reversible chemical reactions to release stored strain, or converting a photon to a local temperature increase, combinations of photoactive units, nanoparticles, ordered mesophases, and polymeric networks are providing an expansive array of photoresponsive polymer options for mechanical devices. Framing the typically geometry-specific observations into an applied engineering vocabulary will ultimately define the role of these materials in future actuator applications, ranging from microfluidic valves in medical devices to optically controlled mirrors in displays.

[1]  Michael F. Ashby,et al.  Actuator Classification and Selection—The Development of a Database , 2002 .

[2]  T. Tatsuma,et al.  Three-dimensional motion and transformation of a photoelectrochemical actuator. , 2006, Chemical communications.

[3]  M. Sukwattanasinitt,et al.  Comparative study of azobenzene and stilbene bridged crown ether p - tert -butylcalix[4]arene , 2005 .

[4]  Ray H. Baughman,et al.  Playing Nature's Game with Artificial Muscles , 2005, Science.

[5]  J L West,et al.  Independent Optical Control of Microfluidic Valves Formed from Optomechanically Responsive Nanocomposite Hydrogels , 2005, Advanced materials.

[6]  T. Ikeda,et al.  Photomechanics: Directed bending of a polymer film by light , 2003, Nature.

[7]  S. Serak,et al.  Polymer film with optically controlled form and actuation. , 2005, Optics express.

[8]  H. Finkelmann,et al.  A new opto-mechanical effect in solids. , 2001, Physical review letters.

[9]  A. Schmidt Electromagnetic Activation of Shape Memory Polymer Networks Containing Magnetic Nanoparticles , 2006 .

[10]  W. Prins,et al.  Photomechanical Energy Conversion in a Polymer Membrane , 1971 .

[11]  L. Bachas,et al.  Chemically Tunable Lensing of Stimuli‐Responsive Hydrogel Microdomes , 2007 .

[12]  N. Miyamoto,et al.  Photocontrol of the Basal Spacing of Azobenzene–Magadiite Intercalation Compound , 2001 .

[13]  Kenji Uchino,et al.  Photodriven Relay Using PLZT Ceramics , 1986, Sixth IEEE International Symposium on Applications of Ferroelectrics.

[14]  R. Lovrien,et al.  The photoviscosity effect. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Zouheir Sekkat,et al.  Photoreactive organic thin films , 2002 .

[16]  T. Ikeda,et al.  Photodeformable Polymers: A New Kind of Promising Smart Material for Micro- and Nano-Applications , 2005 .

[17]  Michel Dumont,et al.  On spontaneous and photoinduced orientational mobility of dye molecules in polymers , 1999 .

[18]  Stacy Cagle Davis,et al.  Transportation energy data book , 2008 .

[19]  Q. Wahab,et al.  New materials for micro-scale sensors and actuators An engineering review , 2007 .

[20]  W. Huck,et al.  Thermal and UV shape shifting of surface topography. , 2006, Journal of the American Chemical Society.

[21]  G. Coté Signal Transduction in Leaf Movement , 1995, Plant physiology.

[22]  Jerome Chauvin,et al.  Photoinduced manipulations of photochromes in polymers: Anisotropy, modulation of the NLO properties and creation of surface gratings , 1998 .

[23]  John D Madden,et al.  Mobile Robots: Motor Challenges and Materials Solutions , 2007, Science.

[24]  Luis Moroder,et al.  Single-Molecule Optomechanical Cycle , 2002, Science.

[25]  Richard Vaia,et al.  Adaptive Composites , 2008, Science.

[26]  Wei Zhang,et al.  Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances , 2006, Nanoscale Research Letters.

[27]  K. Harris,et al.  Glassy photomechanical liquid-crystal network actuators for microscale devices , 2007, The European physical journal. E, Soft matter.

[28]  Yanlei Yu,et al.  Soft actuators based on liquid-crystalline elastomers. , 2006, Angewandte Chemie.

[29]  Y. Einaga Photo-switching magnetic materials , 2006 .

[30]  L. Matějka,et al.  The thermal effect in the photomechanical conversion of a photochromic polymer , 1979 .

[31]  F. Agolini Synthesis and Properties of Azoaromatic Polymers , 1970 .

[32]  P. Braun,et al.  Enhancing Colloids Through the Surface , 2007, Science.

[33]  Yanlei Yu,et al.  Photomechanics of liquid-crystalline elastomers and other polymers. , 2007, Angewandte Chemie.

[34]  D. Leo Engineering Analysis of Smart Material Systems , 2007 .

[35]  Richard A. Vaia,et al.  Framework for nanocomposites , 2004 .

[36]  Tomoyuki Ishikawa,et al.  Rapid and reversible shape changes of molecular crystals on photoirradiation , 2007, Nature.

[37]  R. Vaia,et al.  Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers , 2004, Nature materials.

[38]  J. West,et al.  Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. , 2007, Nano letters.

[39]  Ajit D. Kelkar,et al.  Nanoengineering Of Structural, Functional And Smart Materials , 2005 .

[40]  Tomiki Ikeda,et al.  Anisotropic Bending and Unbending Behavior of Azobenzene Liquid‐Crystalline Gels by Light Exposure , 2003 .

[41]  G. Schuster,et al.  A Liquid Crystal Opto-optical Switch: Nondestructive Information Retrieval Based on a Photochromic Fulgide as Trigger , 1995 .

[42]  W. Knoll,et al.  Optical orientation of azo dye in polymer films at high pressure , 2001 .

[43]  Alain M. Jonas,et al.  Thermo-responsive polymer brushes with tunable collapse temperatures in the physiological range , 2007 .

[44]  Tomiki Ikeda,et al.  Photo-mechanical effects in azobenzene-containing soft materials. , 2007, Soft matter.

[45]  E. Terentjev,et al.  Thermal and photo-actuation in nematic elastomers , 2003 .

[46]  B. Panchapakesan,et al.  Thermal fluctuations, stress relaxation, and actuation in carbon nanotube networks , 2007 .

[47]  Mingwei Li,et al.  Transmission welding of carbon nanocomposites with direct-diode and Nd:YAG solid state lasers , 2004, SPIE LASE.

[48]  R. Langer,et al.  Light-induced shape-memory polymers , 2005, Nature.

[49]  E M Terentjev,et al.  UV manipulation of order and macroscopic shape in nematic elastomers. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Bin Li,et al.  Light‐Driven Side‐On Nematic Elastomer Actuators , 2003 .

[51]  Eugene M. Terentjev,et al.  Photomechanical actuation in polymer–nanotube composites , 2005, Nature materials.

[52]  Tomiki Ikeda,et al.  Optical Switching and Image Storage by Means of Azobenzene Liquid-Crystal Films , 1995, Science.

[53]  Karol Putyera,et al.  Dekker Encyclopedia of Nanoscience and Nanotechnology , 2004 .