Fabrication and Properties of Carbon Fibers

This paper reviews the research and development activities conducted over the past few decades on carbon fibers. The two most important precursors in the carbon fiber industry are polyacrylonitrile (PAN) and mesophase pitch (MP). The structure and composition of the precursor affect the properties of the resultant carbon fibers significantly. Although the essential processes for carbon fiber production are similar, different precursors require different processing conditions in order to achieve improved performance. The research efforts on process optimization are discussed in this review. The review also attempts to cover the research on other precursor materials developed mainly for the purpose of cost reduction.

[1]  M. Darby Carbon Fibres• , 2022 .

[2]  Eiji Kambara A process for producing carbon fibers , 2011 .

[3]  M. Miura,et al.  Carbon fiber from natural biopolymer Bombyx mori silk fibroin with iodine treatment , 2007 .

[4]  Walter K. Tang,et al.  Effect of flame retardants on pyrolysis and combustion of α‐cellulose , 2007 .

[5]  H. M. Ezekiel,et al.  Preparation of graphite fibers from polymeric fibers , 2007 .

[6]  A. Ogale,et al.  A photocrosslinkable melt processible acrylonitrile terpolymer as carbon fiber precursor , 2006 .

[7]  Satoshi Kubo,et al.  Lignin-based Carbon Fibers: Effect of Synthetic Polymer Blending on Fiber Properties , 2005 .

[8]  B. Yurke,et al.  A process for producing a carbon fiber , 2005 .

[9]  V. Pasa,et al.  Biopitch-based general purpose carbon fibers: Processing and properties , 2005 .

[10]  Peter Morgan,et al.  Carbon Fibers and Their Composites , 2005 .

[11]  K. Holtman,et al.  Lignin-based carbon fibers: Oxidative thermostabilization of kraft lignin , 2005 .

[12]  S. A. White Fundamental Studies of Stabilization of Polyacrylonitrile Precursor , 2005 .

[13]  히로아키 구와하라,et al.  Polymer for carbon fiber precursor , 2004 .

[14]  A. Ogale,et al.  UV stabilization route for melt-processible PAN-based carbon fibers , 2003 .

[15]  M. Bengisu,et al.  Oxidation and pyrolysis of chitosan as a route for carbon fiber derivation , 2002 .

[16]  T. Miyata,et al.  Application of a high magnetic field in the carbonization process to increase the strength of carbon fibers , 2002 .

[17]  Garth L. Wilkes,et al.  Dynamic oscillatory shear properties of potentially melt processable high acrylonitrile terpolymers , 2002 .

[18]  Ryutaro Fukushima CARBON FIBERS , 2002 .

[19]  Satoshi Kubo,et al.  Lignin-based carbon fibers for composite fiber applications , 2002 .

[20]  B. Rand,et al.  A role of charge-transfer complex with iodine in the modification of coal tar pitch , 2000 .

[21]  Y. Korai,et al.  Pitch-based carbon fiber of high compressive strength prepared from synthetic isotropic pitch containing mesophase spheres , 1999 .

[22]  Influence of metal ions on structure and properties of acrylic fibers , 1998 .

[23]  Y. Uraki,et al.  Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping , 1998 .

[24]  D. Edie The effect of processing on the structure and properties of carbon fibers , 1998 .

[25]  Seong-Ho Yoon,et al.  Preparation of carbon fiber from isotropic pitch containing mesophase spheres , 1997 .

[26]  Ian R. Harrison,et al.  New aspects in the oxidative stabilization of PAN-based carbon fibers: II , 1996 .

[27]  D. Edie,et al.  Factors limiting the tensile strength of PBO-based carbon fibers , 1996 .

[28]  R. Young,et al.  Effect of fibre microstructure upon the modulus of PAN- and pitch-based carbon fibres , 1995 .

[29]  A. J. Pennings,et al.  An initial evaluation of poly(vinylacetylene) as a carbon fiber precursor , 1995 .

[30]  Y. Uraki,et al.  Preparation of Carbon Fibers from Organosolv Lignin Obtained by Aqueous Acetic Acid Pulping , 1995 .

[31]  N. Gurnagul,et al.  Lignin inhibits autoxidative degradation of cellulose , 1995 .

[32]  L. Peebles Carbon fibres: structure and mechanical properties , 1994 .

[33]  D.D.L. Chung,et al.  Carbon fiber composites , 1994 .

[34]  A. Yokoyama,et al.  A new modification method of exploded lignin for the preparation of a carbon fiber precursor , 1993 .

[35]  M. Thies,et al.  Producing a carbon fiber precursor by supercritical fluid extraction , 1993 .

[36]  K. Sudo,et al.  A new carbon fiber from lignin , 1992 .

[37]  M. Zwick,et al.  Formation of melt-spun acrylic fibers which are well suited for thermal conversion to high strength carbon fibers , 1991 .

[38]  Y. Ko,et al.  4921656 Formation of melt-spun acrylic fibers which are particularly suited for thermal conversion to high strength carbon fibers , 1991 .

[39]  H. Sasaki,et al.  4948574 Method of manufacturing of pitch-base carbon fiber , 1991 .

[40]  Satish Kumar,et al.  Carbon fibers from poly (p-phenylene benzobisthiazole) (pbzt) fibers: conversion and morphological aspects , 1991 .

[41]  Y. Korai,et al.  Mesophase pitches prepared from methylnaphthalene by the aid of HFBF3 , 1991 .

[42]  G. H. Taylor,et al.  Domain structure in MP (mesophase pitch)-based fibres , 1991 .

[43]  T. Ohsaki,et al.  4925604 Process for preparing a carbon fiber of high strength , 1991 .

[44]  A. Oberlin,et al.  Stabilization and carbonization of pan-based carbon fibers as related to mechanical properties , 1991 .

[45]  H. Fink,et al.  Chain conformation of polyacrylonitrile: a comparison of model scattering and radial distribution functions with experimental wide-angle X-ray scattering results , 1991 .

[46]  D. J. Johnson,et al.  Compressional behaviour of carbon fibres , 1990 .

[47]  Ikuo Seo,et al.  Process for producing carbon fibers and the carbon fibers produced by the process , 1990 .

[48]  R. Robson,et al.  Structural characteristics of aramid fibre variants , 1990 .

[49]  K. Imai,et al.  4902762 Process for preparing carbon fibers of high strength , 1990 .

[50]  Hiroyuki Otsuka,et al.  Preparation of mesophase pitch from aromatic hydrocarbons by the aid of HFBF3 , 1990 .

[51]  吉恩·P·道米特,et al.  Improvements in formation of melt-spun acrylic fibers which are particularly suited for thermal conversion to high strength carbon fibers , 1989 .

[52]  S. Peter,et al.  4756818 A method for the production of a carbon fiber precursor , 1989 .

[53]  Chung-Hua Lin,et al.  Thermal stabilization of polyacrylonitrile fibers , 1988 .

[54]  M. Endo Structure of mesophase pitch-based carbon fibres , 1988 .

[55]  A. Abhiraman,et al.  Exploratory experiments in the conversion of plasticized melt spun PAN-based precursors to carbon fibers , 1988 .

[56]  E. G. Wolff Stiffness-Thermal Expansion Relationships in High Modulus Carbon Fibers , 1987 .

[57]  A. Oberlin,et al.  Preliminary studies of mesophase-pitch-based carbon fibres: Structure and microtexture , 1986 .

[58]  H. T. Hahn,et al.  Buckling of a fiber bundle embedded in epoxy , 1986 .

[59]  Erich Fitzer,et al.  Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres , 1986 .

[60]  G. Marom,et al.  Catalytic initiation of polyacrylonitrile stabilization , 1985 .

[61]  Shûji Yamamoto,et al.  Preparation of carbon fibers from syndiotactic 1,2‐polybutadiene , 1984 .

[62]  A. Oberlin,et al.  Microtexture and structure of some high tensile strength, PAN-base carbon fibres , 1984 .

[63]  A. Oberlin,et al.  Microtexture and structure of some high-modulus, PAN-base carbon fibres , 1984 .

[64]  H. Ishikawa,et al.  Syndiotactic 1,2-polybutadiene with Co-CS2 catalyst system. I. Preparation, properties, and application of highly crystalline syndiotactic 1,2-polybutadiene , 1983 .

[65]  I. Mladenov,et al.  Polyacrylonitrile fibers treated by hydrazine hydrate as a basis for the production of carbon fibers , 1983 .

[66]  G. Henrici-Olivė,et al.  The chemistry of carbon fiber formation from polyacrylonitrile , 1983 .

[67]  Mary C. Brennan,et al.  on the , 1982 .

[68]  R. Fenner,et al.  Examination of the thermal decomposition of kraft pine lignin by Fourier transform infrared evolved gas analysis , 1981 .

[69]  G. Henrici-Olivė,et al.  Molecular interactions and macroscopic properties of polyacrylonitrile and model substances , 1979 .

[70]  A. Bright,et al.  The electronic and structural characteristics of carbon fibers from mesophase pitch , 1979 .

[71]  L. S. Singer The mesophase and high modulus carbon fibers from pitch , 1978 .

[72]  S. Marinkovic,et al.  Processes in sulfur dioxide treatment of PAN fibers , 1978 .

[73]  S. Chwastiak,et al.  Solubility of mesophase pitch , 1978 .

[74]  B. J. Wicks Microstructural disorder and the mechanical properties of carbon fibres , 1975 .

[75]  R. J. Diefendorf,et al.  High‐performance carbon fibers , 1975 .

[76]  Erich Fitzer,et al.  The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor , 1975 .

[77]  S. Marinkovic,et al.  Temperature dependence of processes during oxidation of PAN fibres , 1975 .

[78]  P. Goodhew,et al.  A review of the fabrication and properties of carbon fibres , 1975 .

[79]  W. Reynolds,et al.  Crystal shear limit to carbon fibre strength , 1974 .

[80]  J. Bailey,et al.  Oxidation of Acrylic Fibres for Carbon Fibre Formation , 1973, Nature.

[81]  K. Kawamura,et al.  Mechanical properties of glassy carbon fibres derived from phenolic resin , 1972 .

[82]  G. Scott,et al.  Initiation of Low Temperature Degradation of Polyacrylonitrile , 1972 .

[83]  A. E. Standage,et al.  Thermal oxidation of polyacrylonitrile , 1971 .

[84]  T. Kaneko,et al.  A process for the production of carbon fiber , 1971 .

[85]  W. Ruland,et al.  The microstructure of PAN-base carbon fibres , 1970 .

[86]  D. H. Everett,et al.  Preparation and structure of Saran-carbon fibres , 1970 .

[87]  D. Thorne,et al.  Effect of internal polymer flaws on strength of carbon fibres prepared from an acrylic precursor , 1969 .

[88]  H. N. Friedlander,et al.  On the Chromophore of Polyacrylonitrile. VI. Mechanism of Color Formation in Polyacrylonitrile , 1968 .

[89]  W. JOHNSON,et al.  Structure of High Modulus Carbon Fibres , 1967, Nature.

[90]  W. L. Hunter Lability of the α-hydrogen in polyacrylonitrile , 1967 .

[91]  K. Yamada,et al.  On the raw materials of MP carbon fiber , 1966 .

[92]  S. Ōtani On the carbon fiber from the molten pyrolysis products , 1965 .

[93]  M. Tang,et al.  Carbonization of cellulose fibers—I. Low temperature pyrolysis , 1964 .

[94]  J. P. Knudsen The Influence of Coagulation Variables on the Structure and Physical Properties of an Acrylic Fiber , 1963 .

[95]  J. Schurz Discoloration effects in acrylonitrile polymers , 1958 .

[96]  R. Houtz "Orlon" Acrylic Fiber: Chemistry and Properties , 1950 .