Modification of the Audze-Eglājs criterion to achieve a uniform distribution of sampling points

Audze-Eglźjs criterion for DoE provides nonuniformly distributed experimental points.Simple improvement of AE criterion that ensures uniform distribution is presented.The improvement lies in considering periodicity of the design space.Extensive calculations verifying biased and improved uniform sampling are included. Display Omitted The Audze-Eglźjs (AE) criterion was developed to achieve aźuniform distribution of experimental points in aźhypercube. However, the paper shows that the AE criterion provides strongly nonuniform designs due to the effect of the boundaries of the hypercube. We propose aźsimple remedy that lies in the assumption of periodic boundary conditions. The biased behavior of the original AE criterion and excellent performance of the modified criterion are demonstrated using simple numerical examples focused on (i) the uniformity of sampling density over the design space and, (ii) statistical sampling efficiency measured through the ability to correctly estimate the statistical parameters of functions of random variables. An engineering example of reliability calculation is presented, too.

[1]  Miroslav Vořechovský,et al.  Optimal singular correlation matrices estimated when the sample size is less than or equal to the number of random variables , 2012 .

[2]  J. Mazars APPLICATION DE LA MECANIQUE DE L'ENDOMMAGEMENT AU COMPORTEMENT NON LINEAIRE ET A LA RUPTURE DU BETON DE STRUCTURE , 1984 .

[3]  Anna Kucerová,et al.  Soft computing-based calibration of microplane M4 model parameters: Methodology and validation , 2013, Adv. Eng. Softw..

[4]  Vassili Toropov,et al.  Multi-objective Computational Fluid Dynamics (CFD) design optimisation in commercial bread-baking , 2013 .

[5]  Dick den Hertog,et al.  Space-filling Latin hypercube designs for computer experiments , 2008 .

[6]  Anna Kucerová,et al.  Competitive Comparison of Optimal Designs of Experiments for Sampling-based Sensitivity Analysis , 2012, ArXiv.

[7]  Henry P. Wynn,et al.  Maximum entropy sampling , 1987 .

[8]  D. Robinson,et al.  COMPARISON OF QUASI- AND PSEUDO-MONTE CARLO SAMPLING FOR RELIABILITY AND UNCERTAINTY ANALYSIS , 1999 .

[9]  Ronald L. Iman,et al.  Risk methodology for geologic disposal of radioactive waste: small sample sensitivity analysis techniques for computer models, with an application to risk assessment , 1980 .

[10]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo Method , 1981 .

[11]  C. S. Manohar,et al.  Finite element method based Monte Carlo filters for structural system identification , 2011 .

[12]  R. Stocki,et al.  Stochastic simulation for crashworthiness , 2004 .

[13]  Miroslav Vorechovský,et al.  Hierarchical Refinement of Latin Hypercube Samples , 2015, Comput. Aided Civ. Infrastructure Eng..

[14]  B.G.M. Husslage,et al.  Maximin designs for computer experiments , 2006 .

[15]  H. Rabitz,et al.  General foundations of high‐dimensional model representations , 1999 .

[16]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[17]  Stephen J. Leary,et al.  Optimal orthogonal-array-based latin hypercubes , 2003 .

[18]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[19]  R. Nelsen An Introduction to Copulas , 1998 .

[20]  S. Bates,et al.  Formulation of the Audze--Eglais uniform Latin hypercube design of experiments , 2003 .

[21]  Johann Sienz,et al.  Formulation of the Audze-Eglais uniform Latin hypercube design of experiments for constrained design spaces , 2011, Adv. Eng. Softw..

[22]  M. Liefvendahl,et al.  A study on algorithms for optimization of Latin hypercubes , 2006 .

[23]  Drahomír Novák,et al.  FReET: Software for the statistical and reliability analysis of engineering problems and FReET-D: Degradation module , 2014, Adv. Eng. Softw..

[24]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[25]  Bertrand Iooss,et al.  Latin hypercube sampling with inequality constraints , 2009, 0909.0329.

[26]  Manuel Doblaré,et al.  Multiparametric response surface construction by means of proper generalized decomposition: An extension of the PARAFAC procedure , 2013 .

[27]  Johann Sienz,et al.  Decomposed surrogate based optimization of carbon-fiber bicycle frames using Optimum Latin Hypercubes for constrained design spaces , 2013 .

[28]  Peter Winker,et al.  Centered L2-discrepancy of random sampling and Latin hypercube design, and construction of uniform designs , 2002, Math. Comput..

[29]  Daniel Rypl,et al.  Object-oriented, parallel finite element framework with dynamic load balancing , 2012, Adv. Eng. Softw..

[30]  S. Ručevskis,et al.  Identification of elastic properties of composite plate , 2011, MSE 2011.

[31]  T. J. Mitchell,et al.  Exploratory designs for computational experiments , 1995 .

[32]  A. Chate,et al.  Identification of elastic properties of laminates based on experiment design , 2001 .

[33]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[34]  Vassili Toropov,et al.  The use of optimisation for enhancing the development of a novel sustainable masonry unit , 2014 .

[35]  Chang-Xing Ma,et al.  Wrap-Around L2-Discrepancy of Random Sampling, Latin Hypercube and Uniform Designs , 2001, J. Complex..

[36]  Christiane Lemieux,et al.  Generalized Halton sequences in 2008: A comparative study , 2009, TOMC.

[37]  R. H. Myers,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[38]  Bořek Patzák,et al.  OOFEM — an Object-oriented Simulation Tool for Advanced Modeling of Materials and Structures , 2012 .

[39]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[40]  M. Vořechovský Correlation control in small sample Monte Carlo type simulations II: Analysis of estimation formulas, random correlation and perfect uncorrelatedness , 2012 .

[41]  Vicente J. Romero,et al.  Comparison of pure and "Latinized" centroidal Voronoi tessellation against various other statistical sampling methods , 2006, Reliab. Eng. Syst. Saf..

[42]  Boxin Tang Orthogonal Array-Based Latin Hypercubes , 1993 .

[43]  K. Fang,et al.  Number-theoretic methods in statistics , 1993 .

[44]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[45]  E. Myšáková,et al.  A Method for Maximin Constrained Design of Experiments , 2012 .

[46]  K. Smith ON THE STANDARD DEVIATIONS OF ADJUSTED AND INTERPOLATED VALUES OF AN OBSERVED POLYNOMIAL FUNCTION AND ITS CONSTANTS AND THE GUIDANCE THEY GIVE TOWARDS A PROPER CHOICE OF THE DISTRIBUTION OF OBSERVATIONS , 1918 .

[47]  H. Rabitz,et al.  High Dimensional Model Representations , 2001 .

[48]  Yongchang Pu,et al.  Reliability analysis of structures using neural network method , 2006 .

[49]  M. Springer,et al.  The Distribution of Products of Beta, Gamma and Gaussian Random Variables , 1970 .

[50]  D. Novák,et al.  CORRELATION CONTROL IN SMALL-SAMPLE MONTE CARLO TYPE SIMULATIONS I: A SIMULATED ANNEALING APPROACH , 2009 .

[51]  Jerome Sacks,et al.  Designs for Computer Experiments , 1989 .

[52]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[53]  Adam Hapij,et al.  Refined Stratified Sampling for efficient Monte Carlo based uncertainty quantification , 2015, Reliab. Eng. Syst. Saf..

[54]  C. S. Manohar,et al.  A particle filtering approach for structural system identification in vehicle–structure interaction problems , 2010 .

[55]  Layne T. Watson,et al.  Pitfalls of using a single criterion for selecting experimental designs , 2008 .