Recent advances in avalanche photodiodes

The development of high-performance optical receivers has been a primary driving force for research on III-V compound avalanche photodiodes (APDs). The evolution of fiber optic systems toward higher bit rates has pushed APD performance toward higher bandwidths, lower noise, and higher gain-bandwidth products. Utilizing thin multiplication regions has reduced the excess noise. Further noise reduction has been demonstrated by incorporating new materials and impact ionization engineering with beneficially designed heterostructures. High gain-bandwidth products have been achieved waveguide structures. Recently, imaging and sensing applications have spurred interest in low noise APDs in the infrared and the UV as well as large area APDs and arrays. This paper reviews some of the recent progress in APD technology.

[1]  M. Deen,et al.  Multiplication in separate absorption, grading, charge, and multiplication InP-InGaAs avalanche photodiodes , 1995 .

[2]  R. C. Tozer,et al.  Avalanche Multiplication and Breakdown in Al Ga As , 2002 .

[3]  S. D. Personick,et al.  Receiver design for optical fiber communication systems , 1980 .

[4]  Yuichi Matsushima,et al.  High-speed-response InGaAs/InP heterostructure avalanche photodiode with InGaAsP buffer layers , 1982 .

[5]  E. Ishimura,et al.  Investigation of guardring-free planar AlInAs avalanche photodiodes , 2006, IEEE Photonics Technology Letters.

[6]  Sethumadhavan Chandrasekhar,et al.  Multiplication noise of wide-bandwidth InP/InGaAsP/InGaAs avalanche photodiodes , 1989 .

[7]  R. C. Tozer,et al.  Nonlocal effects in thin 4H-SiC UV avalanche photodiodes , 2003 .

[8]  Arden Sher,et al.  CPA band calculation for (Hg, Cd) Te , 1982 .

[9]  Craig Armiento,et al.  Impact ionization in (100), (110), and (111) oriented InP avalanche photodiodes , 1983 .

[10]  J. Conradi,et al.  The distribution of gains in uniformly multiplying avalanche photodiodes: Experimental , 1972 .

[11]  John E. Bowers,et al.  High gain-bandwidth-product silicon heterointerface photodetector , 1997 .

[12]  A. Holmes,et al.  A study of low-bias photocurrent gradient of avalanche photodiodes , 2002 .

[13]  Joe C. Campbell,et al.  Multiplication noise of AlxGa1−xAs avalanche photodiodes with high Al concentration and thin multiplication region , 2001 .

[14]  Factors affecting the ultimate capabilities of high speed avalanche photodiodes and a review of the state-of-the-art , 1973 .

[15]  N. B. Chakraborti,et al.  Multiplication noise in multi-heterostructure avalanche photodiodes , 1983 .

[16]  Joe C. Campbell,et al.  Improved solar-blind detectivity using an AlxGa1−xN heterojunction p–i–n photodiode , 2002 .

[17]  Majeed M. Hayat,et al.  Optimal excess noise reduction in thin heterojunction Al0.6Ga0.4As-GaAs avalanche photodiodes , 2001 .

[18]  M. Hopkinson,et al.  The effect of dead space on gain and excess noise in In0.48Ga0.52P p+in+ diodes , 2003 .

[19]  X. Li,et al.  Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region , 2001, IEEE Photonics Technology Letters.

[20]  R. Mcintyre Multiplication noise in uniform avalanche diodes , 1966 .

[21]  Bo Yang,et al.  Low dark current 4H-SiC avalanche photodiodes , 2003 .

[22]  R. Sidhu,et al.  2.4 lm cutoff wavelength avalanche photodiode on InP substrate , 2000 .

[23]  Bahaa E. A. Saleh,et al.  Effect of dead space on gain and noise double-carrier-multiplication avalanche photodiodes , 1992, Optical Society of America Annual Meeting.

[24]  J. David,et al.  Fokker–Planck model for nonlocal impact ionization in semiconductors , 2001 .

[25]  R. B. Emmons,et al.  Avalanche photodiode frequency response , 1967 .

[26]  W. N. Grant Electron and hole ionization rates in epitaxial silicon at high electric fields , 1973 .

[27]  A. J. Moseley,et al.  Measurement of absorption coefficients of Ga 0.47 In 0.53 As over the wavelength range 1.0-1.7 μm , 1985 .

[28]  Joe C. Campbell,et al.  Ultra-low noise avalanche photodiodes with a "centered-well" multiplication region , 2003 .

[29]  Gregory H. Olsen,et al.  4H-SiC visible blind UV avalanche photodiode , 1999 .

[30]  R. J. McIntyre,et al.  A new look at impact ionization-Part I: A theory of gain, noise, breakdown probability, and frequency response , 1999 .

[31]  Chee Hing Tan,et al.  Avalanche multiplication and noise in submicron Si p-i-n diodes , 2000, Photonics West - Optoelectronic Materials and Devices.

[32]  A. Holmes,et al.  InGaAs/InAlAs avalanche photodiode with undepleted absorber , 2003 .

[33]  J.C. Campbell,et al.  Resonant-cavity InGaAs-InAlAs avalanche photodiodes with gain-bandwidth product of 290 GHz , 1999, IEEE Photonics Technology Letters.

[34]  J. Campbell,et al.  Calculation of gain and noise with dead space for GaAs and Al/sub x/Ga/sub 1-x/As avalanche photodiode , 2002 .

[35]  Bahaa E. A. Saleh,et al.  Boundary effects on multiplication noise in thin heterostructure avalanche photodiodes: theory and experiment [Al/sub 0.6/Ga/sub 0.4/As/GaAs] , 2002 .

[36]  J. C. Dries,et al.  Strain compensated In1−xGaxAs(x<0.47) quantum well photodiodes for extended wavelength operation , 1998 .

[37]  John P. R. David,et al.  Investigation of impact ionization in thin GaAs diodes , 1996 .

[38]  C. R. Crowell,et al.  Threshold Energies for Electron-Hole Pair Production by Impact Ionization in Semiconductors , 1972 .

[39]  Joe C. Campbell,et al.  Backside illuminated high saturation current partially depleted absorber photodetectors , 2003 .

[40]  J.P.R. David,et al.  Multiplication and excess noise characteristics of thin 4H-SiC UV avalanche photodiodes , 2002, IEEE Photonics Technology Letters.

[41]  J.C. Campbell,et al.  Avalanche photodiodes with an impact-ionization-engineered multiplication region , 2000, IEEE Photonics Technology Letters.

[42]  R. Mcintyre The distribution of gains in uniformly multiplying avalanche photodiodes: Theory , 1972 .

[43]  William D. Goodhue,et al.  GaN avalanche photodiodes grown by hydride vapor-phase epitaxy , 1999 .

[44]  H. W. Ruegg,et al.  An optimized avalanche photodiode , 1967 .

[45]  C. Hu,et al.  A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes , 1999 .

[46]  B. Kasper,et al.  High-performance avalanche photodiode with separate absorption ‘grading’ and multiplication regions , 1983 .

[47]  Q. Wahab,et al.  Ionization rates and critical fields in 4H silicon carbide , 1997 .

[48]  Raymond Y. Chiao,et al.  Fast Light, Slow Light , 2002 .

[49]  Mark A. Itzler,et al.  Planar bulk InP avalanche photodiode design for 2.5 and 10 Gb/s applications , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).

[50]  Joe C. Campbell,et al.  GaN avalanche photodiodes , 2000 .

[51]  S. Forrest,et al.  A high-responsivity high-bandwidth asymmetric twin-waveguide coupled InGaAs-InP-InAlAs avalanche photodiode , 2002, IEEE Photonics Technology Letters.

[52]  J.C. Campbell,et al.  Low-noise impact-ionization-engineered avalanche photodiodes grown on InP substrates , 2002, IEEE Photonics Technology Letters.

[53]  Takao Kaneda,et al.  A model for reach‐through avalanche photodiodes (RAPD’s) , 1976 .

[54]  G. E. Stillman,et al.  Electron and hole impact ionization coefficients in InP determined by photomultiplication measurements , 1982 .

[55]  Chee Hing Tan,et al.  Low multiplication noise thin Al0.6Ga0.4As avalanche photodiodes , 2001 .

[56]  J. C. Brice,et al.  Properties of mercury cadmium telluride , 1987 .

[57]  R. A. Logan,et al.  Ionization Rates of Holes and Electrons in Silicon , 1964 .

[58]  Ryoji Takeyari,et al.  High-sensitivity and wide-dynamic-range 10 Gbit/s APD/preamplifier optical receiver module , 2002 .

[59]  J. C. Dries,et al.  Optimization of 10-Gb/s long-wavelength floating guard ring InGaAs-InP avalanche photodiodes , 2002, IEEE Photonics Technology Letters.

[60]  R. C. Tozer,et al.  Avalanche multiplication and breakdown in AlxGa1-xAs (x < 0-9) , 2002 .

[61]  J.C. Campbell,et al.  High-speed and low-noise SACM avalanche photodiodes with an impact-ionization-engineered multiplication region , 2005, IEEE Photonics Technology Letters.

[62]  Federico Capasso,et al.  Enhancement of electron impact ionization in a superlattice: A new avalanche photodiode with a large ionization rate ratio , 1982 .

[63]  J.C. Campbell,et al.  Low dark current GaN avalanche photodiodes , 2000, IEEE Journal of Quantum Electronics.

[64]  Toshitaka Torikai,et al.  High-speed and high-sensitivity waveguide InAlAs avalanche photodiodes for 10-40 Gb/s receivers , 2001, LEOS 2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Cat. No.01CH37242).

[65]  J.C. Campbell,et al.  Impact ionization characteristics of III-V semiconductors for a wide range of multiplication region thicknesses , 2000, IEEE Journal of Quantum Electronics.

[66]  R. C. Tozer,et al.  Low avalanche noise characteristics in thin InP p/sup +/-i-n/sup +/ diodes with electron initiated multiplication , 1999, IEEE Photonics Technology Letters.

[67]  Karl Hess,et al.  Impact ionisation in multilayered heterojunction structures , 1980 .

[68]  A. Lacaita,et al.  Mean gain of avalanche photodiodes in a dead space model , 1996 .

[69]  Morio Wada,et al.  Wide wavelength and low dark current lattice‐mismatched InGaAs/InAsP photodiodes grown by metalorganic vapor‐phase epitaxy , 1994 .

[70]  J. Campbell,et al.  Calculation of Gain and Noise With Dead Space for GaAs and Al Ga As Avalanche Photodiode , 2002 .

[71]  N. Tscherptner,et al.  High-responsivity and high-speed evanescently-coupled avalanche photodiodes , 2003 .

[72]  L. Tarof Planar InP-InGaAs avalanche photodetectors with n-multiplication layer exhibiting a very high gain-bandwidth product , 1990, IEEE Photonics Technology Letters.

[73]  Joe C. Campbell,et al.  Noise characteristics of thin multiplication region GaAs avalanche photodiodes , 1996 .

[74]  M. Kinch,et al.  The HgCdTe electron avalanche photodiode , 2006, 2006 Digest of the LEOS Summer Topical Meetings.

[75]  J. P. Praseuth,et al.  Waveguide AlInAs/GaAlInAs avalanche photodiode with a gain-bandwidth product over 160 GHz , 1997 .

[76]  John P. R. David,et al.  Avalanche multiplication noise characteristics in thin GaAs p/sup +/-i-n/sup +/ diodes , 1998 .

[77]  J. David,et al.  Impact ionization in thin AlxGa1−xAs (x=0.15 and 0.30) p-i-n diodes , 1997 .

[78]  M. Teich,et al.  Impact-ionization and noise characteristics of thin III-V avalanche photodiodes , 2001 .

[79]  Stephen R. Forrest,et al.  Evidence for tunneling in reverse‐biased III‐V photodetector diodes , 1980 .

[80]  F. Capasso,et al.  Low-dark-current low-voltage 1.3–1.6 μm avalanche photodiode with high-low electric field profile and separate absorption and multiplication regions by molecular beam epitaxy , 1984 .

[81]  Joe C. Campbell,et al.  Thin multiplication region InAlAs homojunction avalanche photodiodes , 1998 .

[82]  J. David,et al.  A Monte Carlo investigation of multiplication noise in thin p/sup +/-i-n/sup +/ GaAs avalanche photodiodes , 1998 .

[83]  L. Faraone,et al.  Adaptive focal plane array (AFPA) technologies for integrated infrared microsystems , 2006, SPIE Defense + Commercial Sensing.

[84]  R. C. Tozer,et al.  Excess Noise Characteristics of Al Ga As Avalanche Photodiodes , 2002 .

[85]  Joe C. Campbell,et al.  Multigigabit-per-second avalanche photodiode lightwave receivers , 1987 .

[86]  R. M. Ash,et al.  Buried-mesa avalanche photodiodes , 1998 .

[87]  J.C. Campbell,et al.  Waveguide avalanche photodiode operating at 1.55 μm with a gain-bandwidth product of 320 GHz , 2001, IEEE Photonics Technology Letters.

[88]  S. Demiguel,et al.  Very high-responsivity evanescently coupled photodiodes integrating a short planar multimode waveguide for high-speed applications , 2003, IEEE Photonics Technology Letters.

[89]  P. Mages,et al.  Fused InGaAs-Si avalanche photodiodes with low-noise performances , 2002, IEEE Photonics Technology Letters.

[90]  Jian H. Zhao,et al.  Demonstration of the first 4H-SiC avalanche photodiodes , 2000 .

[91]  Jeffrey D. Beck,et al.  MWIR HgCdTe avalanche photodiodes , 2001, SPIE Optics + Photonics.

[92]  Mark A. Itzler,et al.  Manufacturable planar bulk-InP avalanche photodiodes for 10 Gb/s applications , 1999, 1999 IEEE LEOS Annual Meeting Conference Proceedings. LEOS'99. 12th Annual Meeting. IEEE Lasers and Electro-Optics Society 1999 Annual Meeting (Cat. No.99CH37009).

[93]  John P. R. David,et al.  Avalanche noise characteristics of thin GaAs structures with distributed carrier generation [APDs] , 2000 .