Quantum resistance metrology using graphene

In this paper, we review the recent extraordinary progress in the development of a new quantum standard for resistance based on graphene. We discuss the unique properties of this material system relating to resistance metrology and discuss results of the recent highest-ever precision direct comparison of the Hall resistance between graphene and traditional GaAs. We mainly focus our review on graphene expitaxially grown on SiC, a system which so far resulted in the best results. We also briefly discuss progress in the two other graphene material systems, exfoliated graphene and chemical vapour deposition graphene, and make a critical comparison with SiC graphene. Finally, we discuss other possible applications of graphene in metrology.

[1]  R. Yakimova,et al.  Weak localization scattering lengths in epitaxial, and CVD graphene , 2012, 1305.2381.

[2]  R. Yakimova,et al.  Energy loss rates of hot Dirac fermions in epitaxial, exfoliated, and CVD graphene , 2012, 1212.4903.

[3]  P. San-Jose,et al.  Quantum Hall effect in graphene with twisted bilayer stripe defects , 2012, 1211.5351.

[4]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[5]  R. Yakimova,et al.  Identification of epitaxial graphene domains and adsorbed species in ambient conditions using quantified topography measurements , 2012 .

[6]  K. Schwab,et al.  Publisher's Note: Ultrasensitive and Wide-Bandwidth Thermal Measurements of Graphene at Low Temperatures [Phys. Rev. X 2, 031006 (2012)] , 2012 .

[7]  V. Fal’ko,et al.  Gigahertz quantized charge pumping in graphene quantum dots. , 2012, Nature nanotechnology.

[8]  M. H. Oliveira,et al.  Anisotropic quantum Hall effect in epitaxial graphene on stepped SiC surfaces , 2012 .

[9]  J. Chaste,et al.  A nanomechanical mass sensor with yoctogram resolution. , 2012, Nature nanotechnology.

[10]  A. Ouerghi,et al.  Observation of the quantum Hall effect in epitaxial graphene on SiC(0001) with oxygen adsorption , 2012, 1203.3299.

[11]  A. Madouri,et al.  Hot electron cooling by acoustic phonons in graphene. , 2012, Physical review letters.

[12]  K. Pierz,et al.  Precision quantization of Hall resistance in transferred graphene , 2012, 1203.1798.

[13]  R. Yakimova,et al.  Precision comparison of the quantum Hall effect in graphene and gallium arsenide , 2012, 1202.2985.

[14]  P. Godignon,et al.  Quantum Hall effect in bottom-gated epitaxial graphene grown on the C-face of SiC , 2012 .

[15]  J. Tersoff,et al.  Deformation and scattering in graphene over substrate steps. , 2012, Physical review letters.

[16]  D. Ritchie,et al.  Towards a quantum representation of the ampere using single electron pumps , 2012, Nature Communications.

[17]  J. Williams Cryogenic current comparators and their application to electrical metrology , 2011 .

[18]  M. Fuhrer,et al.  Dual-gated bilayer graphene hot-electron bolometer. , 2011, Nature nanotechnology.

[19]  D. Glattli,et al.  Quantum Hall effect in exfoliated graphene affected by charged impurities: Metrological measurements , 2011, 1110.4884.

[20]  Tobias Bergsten,et al.  Disordered Fermi liquid in epitaxial graphene from quantum transport measurements. , 2011, Physical review letters.

[21]  D. Newell,et al.  Quantum Hall effect on centimeter scale chemical vapor deposited graphene films , 2011, 1109.6829.

[22]  Mikael Syväjärvi,et al.  Engineering and metrology of epitaxial graphene , 2011 .

[23]  R. Yakimova,et al.  Graphene, universality of the quantum Hall effect and redefinition of the SI system , 2011, 1105.4055.

[24]  F. Ahlers,et al.  Graphene p-n junction arrays as quantum-Hall resistance standards , 2011, 1105.0838.

[25]  Michael Krieger,et al.  Bottom-gated epitaxial graphene. , 2011, Nature materials.

[26]  K. Pierz,et al.  Magneto-transport properties of exfoliated graphene on GaAs , 2011, 1103.3367.

[27]  S. Sharpe,et al.  One-loop matching of improved four-fermion staggered operators with an improved gluon action , 2011, 1102.1774.

[28]  R. Yakimova,et al.  Non‐Volatile Photochemical Gating of an Epitaxial Graphene/Polymer Heterostructure , 2011, Advanced materials.

[29]  Yong-Joo Doh,et al.  Observation of Supercurrent in PbIn-Graphene-PbIn Josephson Junction , 2011, 1101.5739.

[30]  C. Coletti,et al.  Structural and electronic properties of epitaxial graphene on SiC(0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation , 2010 .

[31]  R. Yakimova,et al.  Anomalously strong pinning of the filling factor nu=2 in epitaxial graphene , 2010, 1009.3450.

[32]  D. Glattli,et al.  Unveiling quantum Hall transport by Efros-Shklovskii to Mott variable-range hopping transition in graphene , 2010, 1009.1795.

[33]  V. Fal’ko,et al.  Charge transfer between epitaxial graphene and silicon carbide , 2010, 1007.4340.

[34]  G. Schmid The Nature of Nanotechnology , 2010 .

[35]  M. Nagase,et al.  Half-Integer Quantum Hall Effect in Gate-Controlled Epitaxial Graphene Devices , 2010 .

[36]  C. Coletti,et al.  Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping , 2010 .

[37]  Heiko B. Weber,et al.  Quantum oscillations and quantum Hall effect in epitaxial graphene , 2010 .

[38]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2009, Nature nanotechnology.

[39]  C. Berger,et al.  Half integer quantum Hall effect in high mobility single layer epitaxial graphene , 2009, 0909.2903.

[40]  M. Syväjärvi,et al.  Towards a quantum resistance standard based on epitaxial graphene. , 2009, Nature nanotechnology.

[41]  M. Capano,et al.  Observation of quantum-Hall effect in gated epitaxial graphene grown on SiC (0001) , 2009, 0908.3822.

[42]  K. Novoselov,et al.  Scaling of the quantum Hall plateau-plateau transition in graphene , 2009, 0908.0461.

[43]  M. Weinert,et al.  Epitaxial graphene on SiC(0001): more than just honeycombs. , 2009, Physical review letters.

[44]  H. Bachmair Determination of the unit of resistance and the von Klitzing constant Rk based on a calculable capacitor , 2009 .

[45]  W. Poirier,et al.  Resistance metrology based on the quantum Hall effect , 2009 .

[46]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[47]  Alistair B. Forbes,et al.  The quantum metrology triangle and the redefinition of the SI ampere and kilogram; analysis of a reduced set of observational equations , 2009, 0905.3635.

[48]  H. B. Weber,et al.  Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. , 2009, Nature materials.

[49]  S. Kubakaddi Interaction of massless Dirac electrons with acoustic phonons in graphene at low temperatures , 2009 .

[50]  B. Kaestner,et al.  Universal decay cascade model for dynamic quantum dot initialization. , 2009, Physical review letters.

[51]  Pallab Bhattacharya,et al.  Statement of intent for Journal of Physics D: Applied Physics , 2009 .

[52]  Mikael Syväjärvi,et al.  Homogeneous large-area graphene layer growth on 6H-SiC(0001) , 2008 .

[53]  G. Rietveld,et al.  Quantum resistance metrology in graphene , 2008, 0810.4064.

[54]  C. Berger,et al.  Quenching of the quantum Hall effect in multilayered epitaxial graphene: the role of undoped planes. , 2008, Physical review letters.

[55]  A. Penin Quantum Hall effect in quantum electrodynamics , 2008, 0809.0486.

[56]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[57]  K. Emtsev,et al.  Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study , 2008 .

[58]  C. Berger,et al.  Why multilayer graphene on 4H-SiC(0001[over ]) behaves like a single sheet of graphene. , 2008, Physical review letters.

[59]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[60]  J. Pekola,et al.  Nonadiabatic charge pumping in a hybrid single-electron transistor. , 2008, Physical review letters.

[61]  A. Fujiwara,et al.  Nanoampere charge pump by single-electron ratchet using silicon nanowire metal-oxide-semiconductor field-effect transistor , 2008 .

[62]  U. Starke,et al.  Structural properties of the graphene-SiC(0001) interface as a key for the preparation of homogeneous large-terrace graphene surfaces , 2007 .

[63]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[64]  W. Poirier,et al.  Testing universality of the quantum Hall effect by means of the Wheatstone bridge , 2007 .

[65]  Juha J. Vartiainen,et al.  Correction: Corrigendum: Hybrid single-electron transistor as a source of quantized electric current , 2007, Nature Physics.

[66]  M. Katsnelson,et al.  Quantum-Hall activation gaps in graphene. , 2007, Physical review letters.

[67]  L. DiCarlo,et al.  Quantum Hall Effect in a Gate-Controlled p-n Junction of Graphene , 2007, Science.

[68]  N. Gu,et al.  Quantized Transport in Graphene p-n Junctions in a Magnetic Field , 2007, Science.

[69]  Alexander Mattausch,et al.  Ab initio study of graphene on SiC. , 2007, Physical review letters.

[70]  U Zeitler,et al.  Room-Temperature Quantum Hall Effect in Graphene , 2007, Science.

[71]  C. Berger,et al.  Electronic structure of epitaxial graphene layers on SiC: effect of the substrate. , 2007, Physical review letters.

[72]  Scott S. Verbridge,et al.  Electromechanical Resonators from Graphene Sheets , 2007, Science.

[73]  M. Katsnelson Graphene: Carbon in Two Dimensions , 2006, cond-mat/0612534.

[74]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[75]  Peter J. Mohr,et al.  Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing CIPM recommendation 1 (CI-2005) , 2006 .

[76]  V. Fal’ko,et al.  Landau-level degeneracy and quantum Hall effect in a graphite bilayer. , 2005, Physical review letters.

[77]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[78]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[79]  V. Gusynin,et al.  Unconventional integer quantum Hall effect in graphene. , 2005, Physical review letters.

[80]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[81]  B. Taylor,et al.  CODATA Recommended Values of the Fundamental Physical Constants: 2010 | NIST , 2005, 1203.5425.

[82]  David L. Pulfrey,et al.  Quantum capacitance in nanoscale device modeling , 2004 .

[83]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[84]  C. Berger,et al.  Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. , 2004, cond-mat/0410240.

[85]  B. Rosenow,et al.  Is the quantum Hall effect influenced by the gravitational field? , 2003, Physical review letters.

[86]  B. Jeckelmann,et al.  Revised technical guidelines for reliable dc measurements of the quantized Hall resistance , 2003 .

[87]  Mark W. Keller,et al.  Electrical metrology with single electrons , 2003 .

[88]  F. Piquemal,et al.  RK/100 and RK/200 quantum Hall array resistance standards , 2002, cond-mat/0203231.

[89]  Blaise Jeanneret,et al.  The quantum Hall effect as an electrical resistance standard , 2001 .

[90]  F. Piquemal,et al.  Argument for a direct realization of the quantum metrological triangle , 2000 .

[91]  S. Komiyama,et al.  Heat instability of quantum Hall conductors , 2000 .

[92]  J. Martinis,et al.  A capacitance standard based on counting electrons , 1999, Conference on Precision Electromagnetic Measurements. Conference Digest. CPEM 2000 (Cat. No.00CH37031).

[93]  D. Thouless The Quantum Hall Effect , 1998 .

[94]  M. Furlan Electronic transport and the localization length in the quantum Hall effect , 1997, cond-mat/9712304.

[95]  Blaise Jeanneret,et al.  High-precision measurements of the quantized Hall resistance:Experimental conditions for universality , 1997 .

[96]  John M. Martinis,et al.  Accuracy of electron counting using a 7‐junction electron pump , 1996 .

[97]  A. D. Inglis,et al.  Material, device, and step independence of the quantized Hall resistance , 1995 .

[98]  D. Thouless Topological interpretations of quantum Hall conductance , 1994 .

[99]  West,et al.  Compressibility of the two-dimensional electron gas: Measurements of the zero-field exchange energy and fractional quantum Hall gap. , 1994, Physical review. B, Condensed matter.

[100]  F. Delahaye,et al.  Series and parallel connection of multiterminal quantum Hall‐effect devices , 1993 .

[101]  David L. Webb,et al.  One cannot hear the shape of a drum , 1992, math/9207215.

[102]  Gallagher,et al.  Direct comparison of the quantized Hall resistance in gallium arsenide and silicon. , 1991, Physical review letters.

[103]  J. Williams,et al.  An automated cryogenic current comparator resistance ratio bridge for routine resistance measurements , 1990, Conference on Precision Electromagnetic Measurements.

[104]  B. Taylor New Measurements Standards for 1990 , 1989 .

[105]  Büttiker,et al.  Absence of backscattering in the quantum Hall effect in multiprobe conductors. , 1988, Physical review. B, Condensed matter.

[106]  S. Luryi Quantum capacitance devices , 1988 .

[107]  B. Halperin Quantized Hall conductance, current carrying edge states, and the existence of extended states in a two-dimensional disordered potential , 1982 .

[108]  G. Dorda,et al.  New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance , 1980 .

[109]  J. E. Crombeen,et al.  LEED and Auger electron observations of the SiC(0001) surface , 1975 .

[110]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[111]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[112]  J. W. McClure,et al.  Band Structure of Graphite and de Haas-van Alphen Effect , 1957 .

[113]  A. M. Thompson,et al.  A New Theorem in Electrostatics and its Application to Calculable Standards of Capacitance , 1956, Nature.

[114]  P. Wallace The Band Theory of Graphite , 1947 .

[115]  L. Landau Diamagnetismus der Metalle , 1930 .

[116]  R. F.,et al.  Quantum Mechanics , 1929, Nature.

[117]  J. Rundle,et al.  Physics Today , 2014 .

[118]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[119]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[120]  応用物理学会,et al.  Applied physics express , 2008 .

[121]  E. Ruh,et al.  BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 81 , Number 1 , January 1975 GROUP ACTIONS AND CURVATURE BY , 2007 .

[122]  G. Burr,et al.  Journal of Applied Physics , 2004 .

[123]  Tsvi Piran,et al.  Reviews of Modern Physics , 2002 .

[124]  B. Petley The Role of the Fundamental Constants of Physics in Metrology , 1992 .

[125]  D A Blackburn,et al.  Metrologia , 1991 .

[126]  Proceedings of the National Academy of Sciences of the United States of America. Annual subject and author indexes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[127]  Nigel P. Fox,et al.  A Cryogenic Radiometer for Absolute Radiometric Measurements , 1985 .

[128]  E. Lieb,et al.  Physical Review Letters , 1958, Nature.

[129]  J. A. Crowther Reports on Progress in Physics , 1941, Nature.

[130]  G. Faè,et al.  The physical review , 1895 .

[131]  John O’Brien,et al.  Applied Physics Letters , 2022 .