The brightness of the Red Giant Branch tip: Theoretical framework, a set of reference models, and predicted observables

The brightness of the tip of the Red Giant Branch is a useful reference quantity for several fields of astrophysics. An accurate theoretical prediction is needed for such purposes. Aims. We intend to provide a solid theoretical prediction for it, valid for a reference set of standard physical assumptions, and mostly independent of numerical details. We examine the dependence on physical assumptions and numerical details, for a wide range of metallicities and masses, and based on two different stellar evolution codes. We adjust differences between the codes to treat the physics as identical as possible. After we have succeeded in reproducing the tip brightness between the codes, we present a reference set of models based on the most up to date physical inputs, but neglecting microscopic diffusion, and convert theoretical luminosities to observed infrared colours suitable for observations of resolved populations of stars and include analytic fits to facilitate their use. We find that consistent use of updated nuclear reactions, including an appropriate treatment of the electron screening effects, and careful time-stepping on the upper red giant branch are the most important aspects to bring initially discrepant theoretical values into agreement. Small, but visible differences remain unexplained for very low metallicities and mass values at and above 1.2 Msun, corresponding to ages younger than 4 Gyr. The colour transformations introduce larger uncertainties than the differences between the two stellar evolution codes. We demonstrate that careful stellar modeling allows an accurate prediction for the luminosity of the Red Giant Branch tip. Differences to empirically determined brightnesses may result either from insufficient colour transformations or from deficits in the constitutional physics. We present the best-tested theoretical reference values to date.

[1]  W. Baade,et al.  The Resolution of Messier 32, NGC 205, and the Central Region of the Andromeda Nebula , 1944 .

[2]  Edwin E. Salpeter,et al.  Electron Screening and Thermonuclear Reactions , 1954 .

[3]  Allan Sandage,et al.  The Distance of the Local-Group Galaxy IC 1613 Obtained from Baade's Work on its Stellar Content , 1971 .

[4]  H. E. DeWitt,et al.  Screening Factors for Nuclear Reactions. 11. Intermediate Screen-Ing and Astrophysical Applications , 1973 .

[5]  M. S. Cooper,et al.  Screening factors for nuclear reactions. I. General theory , 1973 .

[6]  N. Itoh,et al.  Neutrino Energy Loss in Stellar Interiors , 1985 .

[7]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[8]  G. Raffelt Core mass at the helium flash from observations and a new bound on neutrino electromagnetic properties , 1990 .

[9]  Taft E. Armandroff,et al.  Standard Globular Cluster Giant Branches in the (M(I), (V - I)o) Plane , 1990 .

[10]  John N. Bahcall,et al.  Element Diffusion in the Solar Interior , 1992 .

[11]  V. Castellani,et al.  Stellar evolution as a probe of neutrino properties , 1993 .

[12]  Wendy L. Freedman,et al.  The Tip of the Red Giant Branch as a Distance Indicator for Resolved Galaxies , 1993 .

[13]  Oscar Straniero,et al.  The alpha -enhanced Isochrones and Their Impact on the FITS to the Galactic Globular Cluster System , 1993 .

[14]  A. Weiss,et al.  Standard and Nonstandard Plasma Neutrino Emission Revisited , 1994 .

[15]  M. Catelán,et al.  The Helium-Core Mass at the Helium Flash in Low-Mass Red Giant Stars: Observations and Theory , 1995, astro-ph/9509062.

[16]  Wendy L. Freedman,et al.  The tip of the Red Giant Branch as a Distance Indicator for Resolved Galaxies: II. Computer Simulations , 1995 .

[17]  Weiss,et al.  Red giant bound on the axion-electron coupling reexamined. , 1995, Physical review. D, Particles and fields.

[18]  N. Itoh,et al.  Neutrino Energy Loss in Stellar Interiors. VIII. Braaten-Segel Approximation for the Plasma Neutrino Process , 1996 .

[19]  H. Hayashi,et al.  Neutrino Energy Loss in Stellar Interiors. VII. Pair, Photo-, Plasma, Bremsstrahlung, and Recombination Neutrino Processes , 1996 .

[20]  Wendy L. Freedman,et al.  Tip of the Red Giant Branch Distances to Galaxies. III. The Dwarf Galaxy Sextans A , 1996 .

[21]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[22]  S. Cassisi,et al.  The ‘tip’ of the red giant branch as a distance indicator: results from evolutionary models , 1997, astro-ph/9703186.

[23]  S. Cassisi,et al.  A new analysis of the red giant branch ‘tip’ distance scale and the value of the Hubble constant , 1998, astro-ph/9803103.

[24]  A. Weiss,et al.  An updated theoretical scenario for globular cluster stars , 1997, astro-ph/9707180.

[25]  Gisella Clementini,et al.  Distances, Ages, and Epoch of Formation of Globular Clusters , 1999, astro-ph/9902086.

[26]  P. Aguer,et al.  A compilation of charged-particle induced thermonuclear reaction rates , 1999 .

[27]  European Southern Observatory,et al.  A Step toward the Calibration of the Red Giant Branch Tip as a Standard Candle , 2001, astro-ph/0104114.

[28]  J. Carpenter Color Transformations for the 2MASS Second Incremental Data Release , 2001, astro-ph/0101463.

[29]  Portugal,et al.  A standard stellar library for evolutionary synthesis - III. Metallicity calibration , 2001, astro-ph/0110559.

[30]  S. Cassisi,et al.  Red Giant Branch Stars: The Theoretical Framework , 2002, astro-ph/0201387.

[31]  J. Richer,et al.  Models of metal poor stars with gravitational settling and radiative accelerations: I. evolution and abundance anomalies , 2002 .

[32]  Melbourne.,et al.  Tip of the Red Giant Branch Distances to NGC 4214, UGC 685, and UGC 5456 , 2001, astro-ph/0111372.

[33]  H. Costantini,et al.  Astrophysical S-factor of 14N( p, ?) 15O , 2003, nucl-ex/0312015.

[34]  M. Irwin,et al.  The initial helium content of Galactic globular cluster stars from the R-parameter : Comparison with the cosmic microwave background constraint , 2003, astro-ph/0301378.

[35]  The bottleneck of CNO burning and the age of Globular Clusters , 2004, astro-ph/0403071.

[36]  S. Cassisi,et al.  A Large Stellar Evolution Database for Population Synthesis Studies. I. Scaled Solar Models and Isochrones , 2004, astro-ph/0405193.

[37]  Ata Sarajedini,et al.  Variations in Star Formation History and the Red Giant Branch Tip , 2004 .

[38]  M. Bellazzini,et al.  The calibration of the RGB Tip as a Standard Candle Extension to Near Infrared colors and higher metallicity , 2004 .

[39]  A. Pietrinferni,et al.  Color Transformations and Bolometric Corrections for Galactic Halo Stars: α-Enhanced versus Scaled-Solar Results , 2004, astro-ph/0408111.

[40]  Santi Cassisi,et al.  Evolution of Stars and Stellar Populations , 2005, Galactic Astronomy.

[41]  Influence of two updated nuclear reaction rates on the evolution of low and intermediate mass stars , 2005, astro-ph/0503408.

[42]  Maurizio Salaris,et al.  Tip of the Red Giant Branch distances to galaxies with composite stellar populations , 2005 .

[43]  David R. Alexander,et al.  Low-Temperature Opacities , 2005, astro-ph/0502045.

[44]  The Isolde Collaboration,et al.  Revised rates for the stellar triple-α process from measurement of 12C nuclear resonances , 2005, Nature.

[45]  M. Pinsonneault,et al.  The Solar Heavy-Element Abundances. I. Constraints from Stellar Interiors , 2005, astro-ph/0511779.

[46]  G. Worthey,et al.  AN EMPIRICAL UBV RI JHK COLOR–TEMPERATURE CALIBRATION FOR STARS , 2006, astro-ph/0604590.

[47]  S. Cassisi,et al.  Evolution of Stars and Stellar Populations: Salaris/Evolution of Stars and Stellar Populations , 2006 .

[48]  Edward J. Shaya,et al.  Tip of the Red Giant Branch Distances. I. Optimization of a Maximum Likelihood Algorithm , 2006, astro-ph/0603073.

[49]  Edward J. Shaya,et al.  Tip of the Red Giant Branch Distances. II. Zero-Point Calibration , 2007, astro-ph/0701518.

[50]  S. Cassisi,et al.  Updated Electron-Conduction Opacities: The Impact on Low-Mass Stellar Models , 2007 .

[51]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[52]  A. Weiss,et al.  GARSTEC—the Garching Stellar Evolution Code , 2008 .

[53]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[54]  L. Rizzi,et al.  THE EXTRAGALACTIC DISTANCE DATABASE: COLOR–MAGNITUDE DIAGRAMS , 2009, 0902.3675.

[55]  A. Pietrinferni,et al.  The impact of an updated 14N(p, γ)15O reaction rate on advanced evolutionary stages of low-mass stellar models , 2010 .

[56]  A. Pietrinferni,et al.  The impact of an updated $^{14}N(p,\gamma)^{15}O$ reaction rate on advanced evolutionary stages of low-mass stellar models , 2010, 1007.1307.

[57]  J. Richer,et al.  Atomic diffusion during red giant evolution , 2010 .

[58]  A. B. Balantekin,et al.  Solar fusion cross sections II: the pp chain and CNO cycles , 2010, 1004.2318.

[59]  N. Tanvir,et al.  A BAYESIAN APPROACH TO LOCATING THE RED GIANT BRANCH TIP MAGNITUDE. I. , 2011 .

[60]  A. Dotter,et al.  MODELS FOR METAL-POOR STARS WITH ENHANCED ABUNDANCES OF C, N, O, Ne, Na, Mg, Si, S, Ca, AND Ti, IN TURN, AT CONSTANT HELIUM AND IRON ABUNDANCES , 2012, 1206.1820.

[61]  M. Catelán,et al.  Particle-physics constraints from the globular cluster M5: neutrino dipole moments ? , 2013, 1308.4627.

[62]  Santi Cassisi,et al.  Old Stellar Populations: How to Study the Fossil Record of Galaxy Formation , 2013 .

[63]  M. Catelán Selected topics in the evolution of low-mass stars , 2012, 1211.3150.

[64]  M. Catelán,et al.  Neutrino and axion bounds from the globular cluster M5 (NGC 5904). , 2013, Physical review letters.

[65]  S. Degl'Innocenti,et al.  Cumulative physical uncertainty in modern stellar models - I. The case of low-mass stars , 2012, 1211.0706.

[66]  Luca Rizzi,et al.  INFRARED TIP OF THE RED GIANT BRANCH AND DISTANCES TO THE MAFFEI/IC 342 GROUP , 2014, 1404.2987.

[67]  Luca Casagrande,et al.  Synthetic stellar photometry – I. General considerations and new transformations for broad-band systems , 2014, 1407.6095.

[68]  M. Pinsonneault,et al.  THE CHEMICAL COMPOSITION OF THE SUN FROM HELIOSEISMIC AND SOLAR NEUTRINO DATA , 2013, 1312.3885.

[69]  A. Miglio,et al.  Proper use of Schwarzschild Ledoux criteria in stellar evolution computations , 2014, 1405.0128.

[70]  Wolfgang Gieren,et al.  THE ARAUCARIA PROJECT: ON THE TIP OF THE RED GIANT BRANCH DISTANCE DETERMINATION TO THE MAGELLANIC CLOUDS , 2016, 1605.06210.

[71]  In Sung Jang,et al.  THE TIP OF THE RED GIANT BRANCH DISTANCES TO TYPE IA SUPERNOVA HOST GALAXIES. IV. COLOR DEPENDENCE AND ZERO-POINT CALIBRATION , 2016, 1611.05040.

[72]  C. A. Oxborrow,et al.  Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth , 2016, 1605.02985.

[73]  B. Fields,et al.  Big bang nucleosynthesis: Present status , 2016 .

[74]  S. Basu,et al.  A New Generation of Standard Solar Models , 2016, 1611.09867.

[75]  In Sung Jang,et al.  The Tip of the Red Giant Branch Distances to Typa Ia Supernova Host Galaxies. V. NGC 3021, NGC 3370, and NGC 1309 and the Value of the Hubble Constant , 2017, 1702.01118.