A unified framework for the organization of the primate auditory cortex

In non-human primates a scheme for the organization of the auditory cortex is frequently used to localize auditory processes. The scheme allows a common basis for comparison of functional organization across non-human primate species. However, although a body of functional and structural data in non-human primates supports an accepted scheme of nearly a dozen neighboring functional areas, can this scheme be directly applied to humans? Attempts to expand the scheme of auditory cortical fields in humans have been severely hampered by a recent controversy about the organization of tonotopic maps in humans, centered on two different models with radically different organization. We point out observations that reconcile the previous models and suggest a distinct model in which the human cortical organization is much more like that of other primates. This unified framework allows a more robust and detailed comparison of auditory cortex organization across primate species including humans.

[1]  R. Burkard,et al.  The functional anatomy of the normal human auditory system: responses to 0.5 and 4.0 kHz tones at varied intensities. , 1999, Cerebral cortex.

[2]  A. Galaburda,et al.  Cytoarchitectonic organization of the human auditory cortex , 1980, The Journal of comparative neurology.

[3]  A. Palmer,et al.  Histochemical identification of cortical areas in the auditory region of the human brain , 2002, Experimental Brain Research.

[4]  Timothy D. Griffiths,et al.  Orthogonal representation of sound dimensions in the primate midbrain , 2011, Nature Neuroscience.

[5]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  J. Rademacher,et al.  Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. , 2001, Brain : a journal of neurology.

[7]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[8]  D. Anderson,et al.  The tonotopic organization of the auditory thalamus of the squirrel monkey (Saimiri sciureus). , 1974, Brain research.

[9]  N. Logothetis,et al.  Functional Imaging Reveals Numerous Fields in the Monkey Auditory Cortex , 2006, PLoS biology.

[11]  Colin Humphries,et al.  Tonotopic organization of human auditory cortex , 2010, NeuroImage.

[12]  D. Yves von Cramon,et al.  Is It Tonotopy after All? , 2002, NeuroImage.

[13]  J. Kaas,et al.  Subdivisions of auditory cortex and processing streams in primates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  T. Hackett Information flow in the auditory cortical network , 2011, Hearing Research.

[15]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[16]  S. Clarke,et al.  Cytochrome Oxidase, Acetylcholinesterase, and NADPH-Diaphorase Staining in Human Supratemporal and Insular Cortex: Evidence for Multiple Auditory Areas , 1997, NeuroImage.

[17]  E. G. Jones,et al.  Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys , 1997, The Journal of comparative neurology.

[18]  Li Sun,et al.  Newcastle University E-prints Citation for Published Item: Further Information on Publisher Website: Publishers Copyright Statement: Use Policy: Characterisation of the Bold Response Time Course at Different Levels of the Auditory Pathway in Non-human Primates , 2022 .

[19]  J. Kaas,et al.  Subdivisions and connections of auditory cortex in owl monkeys , 1992, The Journal of comparative neurology.

[20]  A. Ryan,et al.  Single unit responses in the inferior colliculus of the awake and performing rhesus monkey , 1978, Experimental Brain Research.

[21]  J. Kaas,et al.  Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans , 2001, The Journal of comparative neurology.

[22]  C. Economo,et al.  Über Windungsrelief, Maße und Rindenarchitektonik der Supratemporalfläche, ihre individuellen und ihre Seitenunterschiede , 1930 .

[23]  M. Merzenich,et al.  Representation of the cochlear partition of the superior temporal plane of the macaque monkey. , 1973, Brain research.

[24]  Mark T. Waters,et al.  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits distribution,andreproductioninanymedium,providedtheoriginalauthorandsourcearecredited.Thislicensedoesnot permit commercial exploitation or the creation of derivative works without sp , 2009 .

[25]  G A Ojemann,et al.  Neurosurgical management of epilepsy: a personal perspective in 1983. , 1983, Applied neurophysiology.

[26]  R. Goebel,et al.  Mirror-Symmetric Tonotopic Maps in Human Primary Auditory Cortex , 2003, Neuron.

[27]  E G Jones,et al.  Subdivisions of macaque monkey auditory cortex revealed by calcium‐binding protein immunoreactivity , 1995, The Journal of comparative neurology.

[28]  K. Scheffler,et al.  Tonotopic organization of the human auditory cortex as detected by BOLD-FMRI , 1998, Hearing Research.

[29]  D. Bendor,et al.  Neural response properties of primary, rostral, and rostrotemporal core fields in the auditory cortex of marmoset monkeys. , 2008, Journal of neurophysiology.

[30]  M. Mishkin,et al.  Spontaneous High-Gamma Band Activity Reflects Functional Organization of Auditory Cortex in the Awake Macaque , 2012, Neuron.

[31]  P. Morosan,et al.  Human Primary Auditory Cortex: Cytoarchitectonic Subdivisions and Mapping into a Spatial Reference System , 2001, NeuroImage.

[32]  M. Mishkin,et al.  Serial and parallel processing in rhesus monkey auditory cortex , 1997, The Journal of comparative neurology.

[33]  A. Dale,et al.  Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. , 2004, Journal of neurophysiology.

[34]  J. Kaas,et al.  Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys , 1993, The Journal of comparative neurology.

[35]  J. Rauschecker,et al.  Processing of complex sounds in the macaque nonprimary auditory cortex. , 1995, Science.

[36]  David A. Leopold,et al.  Effect of sound intensity on tonotopic fMRI maps in the unanesthetized monkey , 2010, NeuroImage.

[37]  Richard S. J. Frackowiak,et al.  Human Primary Auditory Cortex Follows the Shape of Heschl's Gyrus , 2011, The Journal of Neuroscience.

[38]  P. Flechsig Anatomie des menschlichen Gehirns und Rückenmarks : auf myelogenetischer Grundlage , 1920 .

[39]  Claude Alain,et al.  Functional imaging of human auditory cortex , 2009, Current opinion in otolaryngology & head and neck surgery.

[40]  Paul J. Abbas,et al.  A chronic microelectrode investigation of the tonotopic organization of human auditory cortex , 1996, Brain Research.

[41]  Teemu Rinne,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[42]  Nicholas A. Bock,et al.  Visualizing myeloarchitecture with magnetic resonance imaging in primates , 2011, Annals of the New York Academy of Sciences.

[43]  P. van Dijk,et al.  Mapping the Tonotopic Organization in Human Auditory Cortex with Minimally Salient Acoustic Stimulation , 2011, Cerebral cortex.

[44]  Peter Herscovitch,et al.  Tonotopic organization in human auditory cortex revealed by positron emission tomography , 1985, Hearing Research.

[45]  K. Amunts,et al.  Multimodal architectonic mapping of human superior temporal gyrus , 2005, Anatomy and Embryology.

[46]  H. Versnel,et al.  Involvement of Monkey Inferior Colliculus in Spatial Hearing , 2004, The Journal of Neuroscience.

[47]  T. Hackett,et al.  Organization and Correspondence of the Auditory Cortex of Humans and Nonhuman Primates , 2007 .

[48]  J. Kaas,et al.  Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys , 1998, The Journal of comparative neurology.

[49]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[50]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[51]  L. Kaufman,et al.  Tonotopic organization of the human auditory cortex. , 1982, Science.

[52]  G. Mangun,et al.  Tonotopy in human auditory cortex examined with functional magnetic resonance imaging , 1997, Human brain mapping.

[53]  D. C. Essen,et al.  The topographic organization of rhesus monkey prestriate cortex. , 1978, The Journal of physiology.

[54]  Amir Amedi,et al.  Extensive Cochleotopic Mapping of Human Auditory Cortical Fields Obtained with Phase-Encoding fMRI , 2011, PloS one.