Lax pair, solitons, breathers and modulation instability of a three-component coupled derivative nonlinear Schrödinger system for a plasma

[1]  Bo Tian,et al.  Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system , 2021, Appl. Math. Lett..

[2]  Hui-Min Yin,et al.  Certain electromagnetic waves in a ferromagnetic film , 2021, Commun. Nonlinear Sci. Numer. Simul..

[3]  B. Tian,et al.  Bilinear auto-Bäcklund transformation, soliton and periodic-wave solutions for a (2+1)-dimensional generalized Kadomtsev–Petviashvili system in fluid mechanics and plasma physics , 2021, Chinese Journal of Physics.

[4]  Chunjuan Feng,et al.  Comment on “In oceanography, acoustics and hydrodynamics: An extended coupled (2+1)-dimensional Burgers system”[Chin. J. Phys. 70, 264 (2021)] , 2021, Chinese Journal of Physics.

[5]  Wen-Rui Shan,et al.  Conservation laws and breather-to-soliton transition for a variable-coefficient modified Hirota equation in an inhomogeneous optical fiber , 2021, Waves in Random and Complex Media.

[6]  Meng Wang,et al.  Darboux transformation, generalized Darboux transformation and vector breather solutions for a coupled variable-coefficient cubic-quintic nonlinear Schrödinger system in a non-Kerr medium, twin-core nonlinear optical fiber or waveguide , 2021, Waves in Random and Complex Media.

[7]  Yi-Tian Gao,et al.  Hybrid solutions for the (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics , 2021, Chaos, Solitons & Fractals.

[8]  Meng Wang,et al.  Darboux transformation, generalized Darboux transformation and vector breathers for a matrix Lakshmanan-Porsezian-Daniel equation in a Heisenberg ferromagnetic spin chain , 2021, Chaos, Solitons & Fractals.

[9]  B. Tian,et al.  In an inhomogeneous multicomponent optical fiber: Lax pair, generalized Darboux transformation and vector breathers for a three-coupled variable-coefficient nonlinear Schrödinger system , 2021, The European Physical Journal Plus.

[10]  B. Tian,et al.  Comment on “Shallow water in an open sea or a wide channel: Auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system” , 2021 .

[11]  Yi-Tian Gao,et al.  Bilinear forms, bilinear Bäcklund transformation, soliton and breather interactions of a damped variable-coefficient fifth-order modified Korteweg–de Vries equation for the surface waves in a strait or large channel , 2021, Chinese Journal of Physics.

[12]  Yongjiang Guo,et al.  Looking at an open sea via a generalized $$(2+1)$$-dimensional dispersive long-wave system for the shallow water: scaling transformations, hetero-Bäcklund transformations, bilinear forms and N solitons , 2021, The European Physical Journal Plus.

[13]  B. Tian,et al.  Bäcklund transformations, kink soliton, breather- and travelling-wave solutions for a (3+1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics , 2021 .

[14]  Wen-Rui Shan,et al.  Interaction between the breather and breather-like soliton, and breather-to-soliton conversions of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber , 2021, Optik.

[15]  Miguel A. F. Sanjuán,et al.  Adaptive denoising for strong noisy images by using positive effects of noise , 2021, The European Physical Journal Plus.

[16]  Yongjiang Guo,et al.  Beholding the shallow water waves near an ocean beach or in a lake via a Boussinesq-Burgers system , 2021, Chaos, Solitons & Fractals.

[17]  Zhong Du,et al.  Beak-shaped rogue waves for a higher-order coupled nonlinear Schrödinger system with 4 × 4 Lax pair , 2021, Appl. Math. Lett..

[18]  B. Tian,et al.  Solitonic fusion and fission for a (3 + 1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves , 2021, Physics Letters A.

[19]  B. Tian,et al.  Bilinear auto-Bäcklund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves , 2021, Appl. Math. Lett..

[20]  Yi-Tian Gao,et al.  Higher-order hybrid waves for the (2 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation for an irrotational incompressible fluid via the modified Pfaffian technique , 2021 .

[21]  Yi-Tian Gao,et al.  Bilinear form, solitons, breathers, lumps and hybrid solutions for a (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation , 2021, Nonlinear Dynamics.

[22]  B. Tian,et al.  Lax pair, conservation laws, Darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber , 2021 .

[23]  Yongjiang Guo,et al.  Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system , 2021, Appl. Math. Lett..

[24]  Yi-Tian Gao,et al.  Painlevé analysis, Lie group analysis and soliton-cnoidal, resonant, hyperbolic function and rational solutions for the modified Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff equation in fluid mechanics/plasma physics , 2021 .

[25]  Tao Xu,et al.  Interactions of the vector breathers for the coupled Hirota system with $$4\times 4$$ Lax pair , 2021 .

[26]  R. Tolba Propagation of dust-acoustic nonlinear waves in a superthermal collisional magnetized dusty plasma , 2021 .

[27]  B. Tian,et al.  Generalized Darboux transformation, solitonic interactions and bound states for a coupled fourth-order nonlinear Schrödinger system in a birefringent optical fiber , 2020, Appl. Math. Lett..

[28]  Chunhua Wang,et al.  A new simple chaotic circuit based on memristor and meminductor , 2016, The European Physical Journal Plus.

[29]  Wen-Rui Shan,et al.  Lax pair, Darboux transformation, breathers and rogue waves of an NNN -coupled nonautonomous nonlinear Schrödinger system for an optical fiber or a plasma , 2021 .

[30]  Chen-Rong Zhang,et al.  Magneto-optical/ferromagnetic-material computation: Bäcklund transformations, bilinear forms and N solitons for a generalized (3+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili system , 2021, Appl. Math. Lett..

[31]  Yi-Tian Gao,et al.  Vector bright soliton interactions of the two-component AB system in a baroclinic fluid , 2020 .

[32]  Yi-Tian Gao,et al.  Solitons and periodic waves for a generalized (3+1)-dimensional Kadomtsev–Petviashvili equation in fluid dynamics and plasma physics , 2020, Communications in Theoretical Physics.

[33]  P. Chatterjee,et al.  An open problem on supernonlinear waves in a two-component Maxwellian plasma , 2020, The European Physical Journal Plus.

[34]  Wen-Rui Shan,et al.  Bilinear forms through the binary Bell polynomials, N solitons and Bäcklund transformations of the Boussinesq–Burgers system for the shallow water waves in a lake or near an ocean beach , 2020, Communications in Theoretical Physics.

[35]  Y. Chu,et al.  Dynamical behavior of fractional Chen-Lee-Liu equation in optical fibers with beta derivatives , 2020 .

[36]  Tao Xu,et al.  The coupled derivative nonlinear Schrödinger equation: conservation laws, modulation instability and semirational solutions , 2020 .

[37]  Yi-Tian Gao,et al.  Bilinear form, soliton, breather, lump and hybrid solutions for a ($$\varvec{2+1}$$)-dimensional Sawada–Kotera equation , 2020 .

[38]  Yi-Tian Gao,et al.  Lax pair, conservation laws, Darboux transformation, breathers and rogue waves for the coupled nonautonomous nonlinear Schrödinger system in an inhomogeneous plasma , 2020 .

[39]  Jingsong He,et al.  Higher-order rogue waves and modulation instability of the two-component derivative nonlinear Schrödinger equation , 2019, Commun. Nonlinear Sci. Numer. Simul..

[40]  A. Seadawy,et al.  Some new families of solitary wave solutions of the generalized Schamel equation and their applications in plasma physics , 2019, The European Physical Journal Plus.

[41]  Yi-Tian Gao,et al.  Breathers and rogue waves on the periodic background for the Gerdjikov-Ivanov equation for the Alfvén waves in an astrophysical plasma , 2019, Chaos, Solitons & Fractals.

[42]  M. Marklund,et al.  Physics of the laser-plasma interface in the relativistic regime of interaction , 2019, Physics of Plasmas.

[43]  Tao Xu,et al.  Mixed interactions of localized waves in the three-component coupled derivative nonlinear Schrödinger equations , 2017, 1711.00664.

[44]  Q. P. Liu,et al.  Darboux transformation for a two-component derivative nonlinear Schrödinger equation , 2009, 0911.4802.

[45]  Robert Erdélyi,et al.  Generation of short-lived large-amplitude magnetohydrodynamic pulses by dispersive focusing , 2008 .

[46]  Anjan Kundu,et al.  Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations , 1984 .

[47]  R. Dodd,et al.  The Two Component Derivative Nonlinear Schrodinger Equation , 1979 .

[48]  H. H. Chen,et al.  Integrability of Nonlinear Hamiltonian Systems by Inverse Scattering Method , 1979 .