Revisiting the Schrödinger-Dirac Equation

In flat spacetime, the Dirac equation is the “square root” of the Klein–Gordon equation in the sense that, by applying the square of the Dirac operator to the Dirac spinor, one recovers the equation duplicated for each component of the spinor. In the presence of gravity, applying the square of the curved-spacetime Dirac operator to the Dirac spinor does not yield the curved-spacetime Klein–Gordon equation, but instead yields the Schrödinger–Dirac covariant equation. First, we show that the latter equation gives rise to a generalization to spinors of the covariant Gross–Pitaevskii equation. Then, we show that, while the Schrödinger–Dirac equation is not conformally invariant, there exists a generalization of the equation that is conformally invariant but which requires a different conformal transformation of the spinor than that required by the Dirac equation. The new conformal factor acquired by the spinor is found to be a matrix-valued factor obeying a differential equation that involves the Fock–Ivanenko line element. The Schrödinger–Dirac equation coupled to the Maxwell field is then revisited and generalized to particles with higher electric and magnetic moments while respecting gauge symmetry. Finally, Lichnerowicz’s vanishing theorem in the conformal frame is also discussed.

[1]  G. Gibbons,et al.  Addendum to: Editorial note to: Erwin Schrödinger, Dirac electron in the gravitational field I , 2019, General Relativity and Gravitation.

[2]  Irina Tsyganok,et al.  A Generalized Bochner Technique and Its Application to the Study of Conformal Mappings , 2021, Axioms.

[3]  N. Fleury,et al.  What can we learn from the conformal noninvariance of the Klein-Gordon equation? , 2020, International Journal of Modern Physics A.

[4]  B. S. Kay Editorial note to: Erwin Schrödinger, Dirac electron in the gravitational field I , 2019, General Relativity and Gravitation.

[5]  E. Schrödinger Republication of: Dirac electron in the gravitational field I , 2019, General Relativity and Gravitation.

[6]  F. Hammad,et al.  Noether charge and black hole entropy in teleparallel gravity , 2019, Physical Review D.

[7]  F. Hammad,et al.  More on spacetime thermodynamics in the light of Weyl transformations , 2019, Physical Review D.

[8]  F. Hammad,et al.  Black hole mechanics and thermodynamics in the light of Weyl transformations , 2018, Physical Review D.

[9]  F. Hammad Revisiting black holes and wormholes under Weyl transformations , 2018, Physical Review D.

[10]  F. Hammad,et al.  More on the conformal mapping of quasi-local masses: the Hawking–Hayward case , 2016, 1611.03484.

[11]  F. Hammad Conformal mapping of the Misner–Sharp mass from gravitational collapse , 2016, 1610.02951.

[12]  A. Su'arez,et al.  Hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit , 2015, 1503.07437.

[13]  M. Pollock On the Dirac equation in curved space-time , 2010 .

[14]  D. Blaschke,et al.  Conformal transformations and conformal invariance in gravitation , 2009, Annalen der Physik.

[15]  P. Alsing,et al.  The Phase of a Quantum Mechanical Particle in Curved Spacetime , 2000, gr-qc/0010065.

[16]  Walter Greiner,et al.  Relativistic Quantum Mechanics. Wave Equations , 1997 .

[17]  Oussama Hijazi,et al.  A conformal lower bound for the smallest eigenvalue of the Dirac operator and killing spinors , 1986 .

[18]  T. C. Chapman,et al.  On the Pauli–Schrödinger equation , 1984 .

[19]  W. Heisenberg Quantization of non-linear wave equations , 1984 .

[20]  Werner Heisenberg,et al.  Scientific review papers, talks, and books = Wissenschaftliche Übersichtsartikel, Vorträge und Bücher , 1984 .

[21]  J. Anandan GRAVITATIONAL AND INERTIAL EFFECTS IN QUANTUM FLUIDS , 1981 .

[22]  D. Raine General relativity , 1980, Nature.

[23]  H. Behncke The Dirac equation with an anomalous magnetic moment , 1980 .

[24]  S. Bonazzola,et al.  Systems of self-gravitating particles in general relativity , 1969 .

[25]  H. Pagels SPIN AND GRAVITATION , 1965 .

[26]  A. Peres Gyro-gravitational ratio of Dirac particles , 1963 .

[27]  A. Peres Spinor fields in generally covariant theories , 1962 .

[28]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[29]  W. Heisenberg Quantum Theory of Fields and Elementary Particles , 1957 .

[30]  W. Heisenberg Doubts and hopes in quantumelectrodynamics , 1953 .

[31]  L. Foldy The Electromagnetic Properties of Dirac Particles , 1952 .

[32]  W. Pauli Relativistic Field Theories of Elementary Particles , 1941 .

[33]  V. Fock,et al.  Über eine mögliche geometrische Deutung der relativistischen Quantentheorie , 1929 .

[34]  H. Weyl,et al.  Elektron und Gravitation. I , 1929 .

[35]  H. Weyl GRAVITATION AND THE ELECTRON. , 1929, Proceedings of the National Academy of Sciences of the United States of America.

[36]  V. Fock Geometrisierung der Diracschen Theorie des Elektrons , 1929 .

[37]  V. Fock,et al.  Géometrie quantique linéaire et déplacement paralléle , 1929 .

[38]  H. Tetrode Allgemein-relativistische Quantentheorie des Elektrons , 1928 .

[39]  P. Dirac The quantum theory of the electron , 1928 .

[40]  W. Jr. Pauli,et al.  Zur Quantenmechanik des magnetischen Elektrons , 1927 .

[41]  M. M. G. Ricci,et al.  Méthodes de calcul différentiel absolu et leurs applications , 1900 .