Volcanic Radiative Forcing From 1979 to 2015

Using volcanic sulfur dioxide emissions in an aerosol‐climate model, we derive a time series of global‐mean volcanic effective radiative forcing (ERF) from 1979 to 2015. For 2005–2015, we calculate a global multiannual mean volcanic ERF of −0.08 W/m2 relative to the volcanically quiescent 1999–2002 period, due to a high frequency of small‐to‐moderate‐magnitude explosive eruptions after 2004. For eruptions of large magnitude such as 1991 Mt. Pinatubo, our model‐simulated volcanic ERF, which accounts for rapid adjustments including aerosol perturbations of clouds, is less negative than that reported in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) that only accounted for stratospheric temperature adjustments. We find that, when rapid adjustments are considered, the relation between volcanic forcing and volcanic stratospheric optical depth (SAOD) is 13–21% weaker than reported in IPCC AR5 for large‐magnitude eruptions. Further, our analysis of the recurrence frequency of eruptions reveals that sulfur‐rich small‐to‐moderate‐magnitude eruptions with column heights ≥10 km occur frequently, with periods of volcanic quiescence being statistically rare. Small‐to‐moderate‐magnitude eruptions should therefore be included in climate model simulations, given the >50% chance of one or two eruptions to occur in any given year. Not all of these eruptions affect the stratospheric aerosol budget, but those that do increase the nonvolcanic background SAOD by ~0.004 on average, contributing ~50% to the total SAOD in the absence of large‐magnitude eruptions. This equates to a volcanic ERF of about −0.10 W/m2, which is about two thirds of the ERF from ozone changes induced by ozone‐depleting substances.

[1]  Larry W. Thomason,et al.  A Global Space-based Stratospheric Aerosol Climatology (Version 2.0): 1979–2018 , 2020 .

[2]  B. Martinsson,et al.  Volcanic impact on the climate – the stratospheric aerosol load in the period 2006–2015 , 2018, Atmospheric Chemistry and Physics.

[3]  J. M. English,et al.  The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design , 2018, Geoscientific Model Development.

[4]  Irene Cionni,et al.  Upper tropospheric ice sensitivity to sulfate geoengineering , 2017, Atmospheric Chemistry and Physics.

[5]  Loeb,et al.  Clouds and the Earth’s Radiant Energy System (CERES) Energy Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product , 2018 .

[6]  Andrew Gettelman,et al.  Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM) , 2017 .

[7]  C. Brühl,et al.  Stratospheric aerosol data records for the climate change initiative: Development, validation and application to chemistry-climate modelling , 2017 .

[8]  S. Valcke,et al.  Quantifying the impact of early 21st century volcanic eruptions on global-mean surface temperature , 2017 .

[9]  G. Hegerl,et al.  Quantifying the impact of early 21 st century volcanic eruptions on global-mean surface temperature , 2017 .

[10]  T. Andrews,et al.  Recommendations for diagnosing effective radiative forcing from climate models for CMIP6 , 2016 .

[11]  Brian C. O'Neill,et al.  The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 , 2016 .

[12]  Anja Schmidt,et al.  Emergence of healing in the Antarctic ozone layer , 2016, Science.

[13]  S. Carn,et al.  Satellite‐based global volcanic SO2 emissions and sulfate direct radiative forcing during 2005–2012 , 2016 .

[14]  A. Schmidt,et al.  Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM) , 2016 .

[15]  T. Andrews,et al.  Small global-mean cooling due to volcanic radiative forcing , 2016, Climate Dynamics.

[16]  R. Portmann,et al.  A Temporal Kernel Method to Compute Effective Radiative Forcing in CMIP5 Transient Simulations , 2016 .

[17]  S. Carn,et al.  Multi-decadal satellite measurements of global volcanic degassing , 2016 .

[18]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[19]  A. Lacis Volcanic Aerosol Radiative Properties , 2015 .

[20]  J. Vernier,et al.  Significant radiative impact of volcanic aerosol in the lowermost stratosphere , 2015, Nature Communications.

[21]  M. Hermann,et al.  Influence of volcanic eruptions on midlatitude upper tropospheric aerosol and consequences for cirrus clouds , 2015 .

[22]  Thomas C. Peterson,et al.  Possible artifacts of data biases in the recent global surface warming hiatus , 2015, Science.

[23]  M Höpfner,et al.  Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC , 2015, Journal of geophysical research. Atmospheres : JGR.

[24]  J. Marotzke,et al.  Forcing, feedback and internal variability in global temperature trends , 2015, Nature.

[25]  Makiko Sato,et al.  Total volcanic stratospheric aerosol optical depths and implications for global climate change , 2014 .

[26]  James R. Campbell,et al.  Correcting the record of volcanic stratospheric aerosol impact: Nabro and Sarychev Peak , 2014 .

[27]  R. Knutti,et al.  Natural variability, radiative forcing and climate response in the recent hiatus reconciled , 2014 .

[28]  Hui Wan,et al.  Technical Note: On the use of nudging for aerosol–climate model intercomparison studies , 2014 .

[29]  K. Cowtan,et al.  Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends , 2014 .

[30]  Richard P Allan,et al.  Changes in global net radiative imbalance 1985–2012 , 2014, Geophysical research letters.

[31]  J. Haywood,et al.  The impact of volcanic eruptions in the period 2000–2013 on global mean temperature trends evaluated in the HadGEM2‐ES climate model , 2014 .

[32]  Gavin A. Schmidt,et al.  Reconciling warming trends , 2014 .

[33]  Carl A. Mears,et al.  Volcanic contribution to decadal changes in tropospheric temperature , 2014 .

[34]  Kevin E. Trenberth,et al.  An apparent hiatus in global warming? , 2013 .

[35]  S. Ghan Technical Note: Estimating aerosol effects on cloud radiative forcing , 2013 .

[36]  Francis W. Zwiers,et al.  Overestimated global warming over the past 20 years , 2013 .

[37]  D. Weisenstein,et al.  Microphysical and radiative changes in cirrus clouds by geoengineering the stratosphere , 2013 .

[38]  J. Gregory,et al.  Climate models without preindustrial volcanic forcing underestimate historical ocean thermal expansion , 2013 .

[39]  N. Gillett,et al.  Surface response to stratospheric aerosol changes in a coupled atmosphere–ocean model , 2013 .

[40]  U. Lohmann,et al.  Effects of stratospheric sulfate aerosol geo‐engineering on cirrus clouds , 2012 .

[41]  S. Ghan,et al.  Constraining the influence of natural variability to improve estimates of global aerosol indirect effects in a nudged version of the Community Atmosphere Model 5 , 2012 .

[42]  Andrew Gettelman,et al.  Climate impacts of ice nucleation , 2012 .

[43]  M. Chin,et al.  Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO 2 from 1980 to 2010 for hindcast model experiments , 2012 .

[44]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[45]  Philip J. Rasch,et al.  Toward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing , 2012 .

[46]  David R. Doelling,et al.  Advances in Understanding Top-of-Atmosphere Radiation Variability from Satellite Observations , 2012, Surveys in Geophysics.

[47]  C. Timmreck,et al.  The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions , 2011 .

[48]  R. Neely,et al.  The Persistently Variable “Background” Stratospheric Aerosol Layer and Global Climate Change , 2011, Science.

[49]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[50]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[51]  J. Pommereau,et al.  Major influence of tropical volcanic eruptions on the stratospheric aerosol layer during the last decade , 2011 .

[52]  B. Kravitz,et al.  Climate effects of high-latitude volcanic eruptions: Role of the time of year , 2011 .

[53]  J. Hansen,et al.  GLOBAL SURFACE TEMPERATURE CHANGE , 2010 .

[54]  J. Gregory Long‐term effect of volcanic forcing on ocean heat content , 2010 .

[55]  S. Klein,et al.  Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model , 2010 .

[56]  James J. Hack,et al.  A New Sea Surface Temperature and Sea Ice Boundary Dataset for the Community Atmosphere Model , 2008 .

[57]  Andrew Gettelman,et al.  A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests , 2008 .

[58]  S. Ghan,et al.  A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part II: Single-Column and Global Results , 2008 .

[59]  Piers M. Forster,et al.  Climate Forcings and Climate Sensitivities Diagnosed from Coupled Climate Model Integrations , 2006 .

[60]  J. Hansen,et al.  Efficacy of climate forcings , 2005 .

[61]  J. Gregory,et al.  The Climate Sensitivity and Its Components Diagnosed from Earth Radiation Budget Data , 2005 .

[62]  Ulrike Lohmann,et al.  Impact of the Mount Pinatubo eruption on cirrus clouds formed by homogeneous freezing in the ECHAM4 GCM , 2003 .

[63]  Atmospheric Chemistry and Physics Discussions , 2003 .

[64]  Claudia J. Stubenrauch,et al.  Did the Eruption of the Mt. Pinatubo Volcano Affect Cirrus Properties , 2001 .

[65]  H. Roscoe The Risk of Large Volcanic Eruptions and the Impact of this Risk on Future Ozone Depletion , 2001 .

[66]  J. Coakley,et al.  Clouds and the Earth's Radiant Energy System (CERES) Validation Plan CERES Inversion to Instantaneous TOA Fluxes (Subsystem 4.5) , 2000 .

[67]  Bryan A. Baum,et al.  Clouds and the Earth's Radiant Energy System (CERES) , 1995 .

[68]  D. Pyle Mass and energy budgets of explosive volcanic eruptions , 1995 .

[69]  J. Hansen,et al.  Stratospheric aerosol optical depths, 1850–1990 , 1993 .

[70]  P. Minnis,et al.  Radiative Climate Forcing by the Mount Pinatubo Eruption , 1993, Science.

[71]  Owen B. Toon,et al.  The potential effects of volcanic aerosols on cirrus cloud microphysics , 1992 .

[72]  J. Hansen,et al.  Climate forcing by stratospheric aerosols , 1992 .

[73]  K. Sassen Evidence for Liquid-Phase Cirrus Cloud Formation from Volcanic Aerosols: Climatic Implications , 1992, Science.

[74]  Servando Cruz-Reyna,et al.  Poisson-distributed patterns of explosive eruptive activity , 1991 .

[75]  S. Self,et al.  The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism , 1982 .