Gamma-range synchronization of fast-spiking interneurons can enhance detection of tactile stimuli

We tested the sensory impact of repeated synchronization of fast-spiking interneurons (FS), an activity pattern thought to underlie neocortical gamma oscillations. We optogenetically drove 'FS-gamma' while mice detected naturalistic vibrissal stimuli and found enhanced detection of less salient stimuli and impaired detection of more salient ones. Prior studies have predicted that the benefit of FS-gamma is generated when sensory neocortical excitation arrives in a specific temporal window 20–25 ms after FS synchronization. To systematically test this prediction, we aligned periodic tactile and optogenetic stimulation. We found that the detection of less salient stimuli was improved only when peripheral drive led to the arrival of excitation 20–25 ms after synchronization and that other temporal alignments either had no effects or impaired detection. These results provide causal evidence that FS-gamma can enhance processing of less salient stimuli, those that benefit from the allocation of attention.

[1]  F. Shaw,et al.  Dynamic changes of gamma activities of somatic cortical evoked potentials during wake–sleep states in rats , 2003, Brain Research.

[2]  Jeremy D. Cohen,et al.  Detection of Low Salience Whisker Stimuli Requires Synergy of Tectal and Thalamic Sensory Relays , 2010, The Journal of Neuroscience.

[3]  D. Barth,et al.  Sensory-evoked high-frequency (γ-band) oscillating potentials in somatosensory cortex of the unanesthetized rat , 1997, Brain Research.

[4]  Jason Wolfe,et al.  Sparse temporal coding of elementary tactile features during active whisker sensation , 2009, Nature Neuroscience.

[5]  S. Nelson,et al.  Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. , 1998, Journal of neurophysiology.

[6]  J. Maunsell,et al.  Differences in Gamma Frequencies across Visual Cortex Restrict Their Possible Use in Computation , 2010, Neuron.

[7]  L. Fadiga,et al.  Origins of 1/f2 scaling in the power spectrum of intracortical local field potential. , 2012, Journal of neurophysiology.

[8]  C. Petersen,et al.  Membrane potential correlates of sensory perception in mouse barrel cortex , 2013, Nature Neuroscience.

[9]  Jessica A. Cardin,et al.  A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior , 2011, Molecular Psychiatry.

[10]  Matthew A. Wilson,et al.  Hippocampal Replay of Extended Experience , 2009, Neuron.

[11]  Daniel N. Hill,et al.  Texture Coding in the Rat Whisker System: Slip-Stick Versus Differential Resonance , 2008, PLoS biology.

[12]  John H R Maunsell,et al.  Cortical neural populations can guide behavior by integrating inputs linearly, independent of synchrony , 2013, Proceedings of the National Academy of Sciences.

[13]  G J Vachtsevanos,et al.  Gamma coherence and conscious perception , 2002, Neurology.

[14]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[15]  Nancy Kopell,et al.  Gamma Oscillations and Stimulus Selection , 2008, Neural Computation.

[16]  R. Desimone,et al.  Gamma-band synchronization in visual cortex predicts speed of change detection , 2006, Nature.

[17]  Jakob Voigts,et al.  The flexDrive: an ultra-light implant for optical control and highly parallel chronic recording of neuronal ensembles in freely moving mice , 2013, Front. Syst. Neurosci..

[18]  Paul Nurse,et al.  Cell Division Intersects with Cell Geometry , 2010, Cell.

[19]  J. Goldberg,et al.  Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. , 1969, Journal of neurophysiology.

[20]  Jason Chung,et al.  Plasticity of Recurrent L2/3 Inhibition and Gamma Oscillations by Whisker Experience , 2013, Neuron.

[21]  J. Siegle Combining Optical Stimulation with Extracellular Electrophysiology in Behaving Mice , 2011 .

[22]  T. Sejnowski,et al.  Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity , 2003, Neuroscience.

[23]  R. Desimone,et al.  Modulation of Oscillatory Neuronal Synchronization by Selective Visual Attention , 2001, Science.

[24]  R. Desimone,et al.  The Effects of Visual Stimulation and Selective Visual Attention on Rhythmic Neuronal Synchronization in Macaque Area V4 , 2008, The Journal of Neuroscience.

[25]  A. Kohn,et al.  Gamma and the Coordination of Spiking Activity in Early Visual Cortex , 2013, Neuron.

[26]  R. Traub,et al.  Inhibition-based rhythms: experimental and mathematical observations on network dynamics. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[27]  T. Womelsdorf,et al.  Attentional Stimulus Selection through Selective Synchronization between Monkey Visual Areas , 2012, Neuron.

[28]  D. Simons,et al.  Circuit dynamics and coding strategies in rodent somatosensory cortex. , 2000, Journal of neurophysiology.

[29]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[30]  Nancy Kopell,et al.  Synchronization in Networks of Excitatory and Inhibitory Neurons with Sparse, Random Connectivity , 2003, Neural Computation.

[31]  Alain Destexhe,et al.  Inhibition Determines Membrane Potential Dynamics and Controls Action Potential Generation in Awake and Sleeping Cat Cortex , 2007, The Journal of Neuroscience.

[32]  D. Simons,et al.  Membrane potential changes in rat SmI cortical neurons evoked by controlled stimulation of mystacial vibrissae , 1988, Brain Research.

[33]  Robert Oostenveld,et al.  Visually induced gamma-band activity predicts speed of change detection in humans , 2010, NeuroImage.

[34]  M. Armstrong‐James,et al.  Flow of excitation within rat barrel cortex on striking a single vibrissa. , 1992, Journal of neurophysiology.

[35]  S. Epstein,et al.  Background gamma rhythmicity and attention in cortical local circuits: a computational study. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[37]  Lief E. Fenno,et al.  Neocortical excitation/inhibition balance in information processing and social dysfunction , 2011, Nature.

[38]  E. Moser,et al.  Faculty Opinions recommendation of Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. , 2009 .

[39]  H. Adesnik,et al.  Lateral competition for cortical space by layer-specific horizontal circuits , 2010, Nature.

[40]  Jessica A. Cardin,et al.  Neocortical Interneurons: From Diversity, Strength , 2010, Cell.

[41]  E. Miyashita,et al.  Gamma-band oscillations in the “barrel cortex” precede rat's exploratory whisking , 1999, Neuroscience.

[42]  D. McCormick,et al.  Inhibitory Postsynaptic Potentials Carry Synchronized Frequency Information in Active Cortical Networks , 2005, Neuron.

[43]  M. Brecht,et al.  Spiking Irregularity and Frequency Modulate the Behavioral Report of Single-Neuron Stimulation , 2014, Neuron.

[44]  Jessica A. Cardin,et al.  Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2 , 2010, Nature Protocols.

[45]  Ulf Knoblich,et al.  What do We Gain from Gamma? Local Dynamic Gain Modulation Drives Enhanced Efficacy and Efficiency of Signal Transmission , 2010, Front. Hum. Neurosci..

[46]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[47]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[48]  Joachim Gross,et al.  Gamma Oscillations in Human Primary Somatosensory Cortex Reflect Pain Perception , 2007, PLoS biology.

[49]  W. Singer,et al.  Temporal binding and the neural correlates of sensory awareness , 2001, Trends in Cognitive Sciences.

[50]  Amy M. Ni,et al.  Strength of Gamma Rhythm Depends on Normalization , 2013, PLoS biology.

[51]  Karl Deisseroth,et al.  Activation of Specific Interneurons Improves V1 Feature Selectivity and Visual Perception , 2012, Nature.

[52]  Sean M Montgomery,et al.  Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm , 2008, Neuron.

[53]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[54]  Michael N. Shadlen,et al.  Synchrony Unbound A Critical Evaluation of the Temporal Binding Hypothesis , 1999, Neuron.

[55]  David J. Anderson,et al.  Subregion- and Cell Type–Restricted Gene Knockout in Mouse Brain , 1996, Cell.

[56]  G. Buzsáki,et al.  Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. , 1996, The Journal of physiology.

[57]  M. Andermann,et al.  Embodied Information Processing: Vibrissa Mechanics and Texture Features Shape Micromotions in Actively Sensing Rats , 2008, Neuron.

[58]  Jadin C. Jackson,et al.  Quantitative measures of cluster quality for use in extracellular recordings , 2005, Neuroscience.

[59]  S. Epstein,et al.  Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model , 2008, Proceedings of the National Academy of Sciences.

[60]  György Buzsáki,et al.  Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo , 1998, The European journal of neuroscience.

[61]  Romesh D Kumbhani,et al.  Precision, reliability, and information-theoretic analysis of visual thalamocortical neurons. , 2007, Journal of neurophysiology.

[62]  Daniel E Feldman,et al.  Behavioral detection of passive whisker stimuli requires somatosensory cortex. , 2013, Cerebral cortex.

[63]  T. Gerdjikov,et al.  Discrimination of Vibrotactile Stimuli in the Rat Whisker System: Behavior and Neurometrics , 2010, Neuron.

[64]  Zengcai V. Guo,et al.  Neural coding during active somatosensation revealed using illusory touch , 2013, Nature Neuroscience.

[65]  Matthew A. Wilson,et al.  Micro-drive Array for Chronic in vivo Recording: Tetrode Assembly , 2009, Journal of visualized experiments : JoVE.

[66]  Jorge V. José,et al.  Inhibitory synchrony as a mechanism for attentional gain modulation , 2004, Journal of Physiology-Paris.

[67]  Alexander S. Ecker,et al.  Recording chronically from the same neurons in awake, behaving primates. , 2007, Journal of neurophysiology.